Learn R Programming

catnet (version 1.16.1)

cnCluster-method: Network Clustering

Description

Retrieving the clusters, the connected sub-networks, of a given network. Estimating the clusters from data.

Usage

cnCluster(object)
 cnClusterSep(object, data, perturbations=NULL)
 cnClusterMI(data, perturbations=NULL, threshold=0)

Value

A list of named nodes.

Arguments

object

a catNetwork

data

a matrix in row-nodes format or a data.frame in column-nodes format

perturbations

a binary perturbation matrix with the dimensions of data

threshold

a numeric value

Author

N. Balov

Details

The function cnCluster constructs a list of subsets of nodes of the object, each representing a connected sub-network. Isolated nodes, these are nodes not connected to any other, are not reported. Thus, every element of the output list contains at least two nodes. The function cnClusterMI clusters the nodes of the data using the pairwise mutual information and critical value threshold.

Examples

Run this code
  cnet <- cnRandomCatnet(numnodes=30, maxParents=2, numCategories=2)
  cnCluster(object=cnet)

Run the code above in your browser using DataLab