Learn R Programming

chainbinomial (version 0.1.5)

cbmod: Fitting models for Secondary Attack Rate with Chain Binomial response

Description

Fitting models for Secondary Attack Rate with Chain Binomial response

Usage

cbmod(
  y,
  s0,
  x = NULL,
  i0 = 1,
  generations = Inf,
  link = "identity",
  optim_method = "BFGS"
)

Value

A list of class cbmod with the following components:

  • parameters The point estimate of the regression coefficients.

  • se Standard error of the regression coefficient estimates.

  • vcov Variance-Covariance matrix of the regression coefficient estimates.

  • p_values P-values of the null hypothesis that the regression regression coefficient estimate is 0.

  • loglikelihood the log likelihood value at the point estimate.

  • npar Number of parameters.

  • sar_hat Vector of fitted secondary attack rates.

  • fitted_values Vector of expected outbreak size (final attack rate).

  • link Link function used by the regression model.

  • null_model = Null model, fitted with estimate_sar(). This is equivalent to an intercept only model.

  • warnings Warning_messages,

  • est_time: Time used to fit the model.

  • omitted_values Vector indicating data points that were ignored during estimation because of missing values.

Arguments

y

numeric, the number of infected cases.

s0

numeric, the number of initial susceptibles.

x

matrix of predictors (design matrix).

i0

numeric, number of initial infected. Default is 1.

generations

numeric.

link

Link function. Default is 'identity'.

optim_method

Optimization method used by optim.

Details

The following link functions are available: identity, log, logit, and cloglog.

See Also

Methods for cbmod objects:

  • summary.cbmod()

  • predict.cbmod()

  • coef.cbmod()

  • confint.cbmod()

  • vcov.cbmod()

  • tidy.cbmod()

  • glance.cbmod()

Examples

Run this code
set.seed(234)
mydata <- data.frame(infected = rchainbinom(n = 15, s0 = 5, sar = 0.2,
   i0 = 1, generations = Inf),
   s0 = 5, i0 = 1, generations = Inf)
xmat <- model.matrix(~ 1, data = mydata)
res <- cbmod(y = mydata$infected, s0 = mydata$s0, x = xmat, i0 = mydata$i0,
   generations = mydata$generations)
summary(res)


Run the code above in your browser using DataLab