powered by
Use the Gaussian method to evaluate integrals
gaussint(f, x, w)gauss.legendre(f, m = 5)gauss.laguerre(f, m = 5)gauss.hermite(f, m = 5)
gauss.legendre(f, m = 5)
gauss.laguerre(f, m = 5)
gauss.hermite(f, m = 5)
function to integrate
list of evaluation points
list of weights
number of evaluation points
the value of the integral
The gaussint function uses the Gaussian integration to evaluate an integral. The function itself is a driver and expects the integration points and associated weights as options.
gaussint
Other integration: adaptint(), giniquintile(), mcint(), midpt(), revolution-solid, romberg(), simp38(), simp(), trap()
adaptint()
giniquintile()
mcint()
midpt()
revolution-solid
romberg()
simp38()
simp()
trap()
# NOT RUN { w = c(1, 1) x = c(-1 / sqrt(3), 1 / sqrt(3)) f <- function(x) { x^3 + x + 1 } gaussint(f, x, w) # }
Run the code above in your browser using DataLab