cointRegD(x, y, deter, kernel = c("ba", "pa", "qs", "tr"), bandwidth = c("and", "nw"), n.lead = NULL, n.lag = NULL, kmax = c("k4", "k12"), info.crit = c("AIC", "BIC"), demeaning = FALSE, check = TRUE, ...)numeric | matrix | data.frame]
RHS variables on which to apply the D-OLS estimation (see Details).numeric | matrix | data.frame]
LHS variable(s) on which to apply the D-OLS estimation (see Details).
Has to be one-dimensional. If matrix, it may
have only one row or column, if data.frame just one column.numeric | matrix | data.frame |
NULL]
Deterministic variable to include in the equation (see Details). If it's
NULL or missing, no deterministic variable is included in the model.character(1)]
The kernel function to use for calculating the long-run variance.
Default is Bartlett kernel ("ba"), see Details for alternatives.character(1) | integer(1)]
The bandwidth to use for calculating the long-run variance.
Default is Andrews (1991) ("and"), an alternative is Newey West
(1994) ("nw").numeric(1) | NULL]
Numbers of Leads and Lags (see Details). Default is NULL.character(1)]
Maximal value for lags and leads if generated automatically (see Details).
Default is "k4".character(1)]
Information criterion to use for the automatical calculation of lags and
leads. Default is "AIC".logical]
Demeaning of residuals in getLongRunVar.
Default is FALSE.logical]
Wheather to check (and if necessary convert) the arguments.
See checkVars for further information.getBandwidthNW.cointReg]. List with components:
beta [numeric]delta [numeric]theta [numeric]beta and deltasd.theta [numeric]thetat.theta [numeric]thetap.theta [numeric]thetatheta.all [numeric]beta, delta and the auxiliary
leads-and-lags regressorsresiduals [numeric]omega.u.v [numeric]varmat [matrix]Omega [list]bandwidth [list]kernel [character]lead.lag [list]Information about the D-OLS specific arguments:
n.lag, n.leadNULL
(default), the function getLeadLag will be used to
calculate them automatically (see Choi and Kurozumi (2012) for details).
In that case, the following two arguments are needed.
kmaxfloor(4 * (x.T/100)^(1/4)), else it's
floor(12 * (x.T/100)^(1/4)) with x.T is equal
to the data's length. One of "k4" or "k12".
Default is "k4".
info.crit"AIC" or "BIC".
Default is "AIC".cointRegFM,
cointRegIM, cointReg,
plot.cointReg, print.cointRegOther D-OLS: getLeadLag,
getModD, makeLeadLagMatrix
set.seed(1909)
x1 <- cumsum(rnorm(100, mean = 0.05, sd = 0.1))
x2 <- cumsum(rnorm(100, sd = 0.1)) + 1
x3 <- cumsum(rnorm(100, sd = 0.2)) + 2
x <- cbind(x1, x2, x3)
y <- x1 + x2 + x3 + rnorm(100, sd = 0.2) + 1
deter <- cbind(level = 1, trend = 1:100)
test <- cointRegD(x, y, deter, n.lead = 2, n.lag = 2,
kernel = "ba", bandwidth = "and")
print(test)
test2 <- cointRegD(x, y, deter, kmax = "k4", info.crit = "BIC",
kernel = "ba", bandwidth = "and")
print(test2)
Run the code above in your browser using DataLab