Learn R Programming

copBasic (version 2.0.1)

GLcop: The Galambos Extreme Value Copula

Description

The Galambos copula (Joe, 2014, p. 174) is $$\mathbf{C}_{\Theta}(u,v) = \mathbf{GL}(u,v) = uv\,\mathrm{exp}{[x^{-\Theta} + y^{-\Theta}]^{-1/\Theta}}\mbox{,}$$ where $\Theta \in [0, \infty)$, $x = -\log(u)$, and $y = -\log(v)$. As $\Theta \rightarrow 0^{+}$, the copula limits to independence ($\mathbf{\Pi}$; P) and as $\Theta \rightarrow \infty$, the copula limits to perfect association ($\mathbf{M}$; M). The copula here is a bivariate extreme value copula ($BEV$), and the parameter $\Theta$ requires numerical methods.

Usage

GLcop(u, v, para=NULL, ...)

Arguments

u
Nonexceedance probability $u$ in the $X$ direction;
v
Nonexceedance probability $v$ in the $Y$ direction;
para
A vector (single element) of parameters---the $\Theta$ parameter of the copula; and
...
Additional arguments to pass.

Value

  • Value(s) for the copula are returned.

encoding

utf8

concept

Galambos extreme value copula

References

Joe, H., 2014, Dependence modeling with copulas: Boca Raton, CRC Press, 462 p.

See Also

M, P, GHcop, HRcop, rhobevCOP

Examples

Run this code
# Parameter Theta = pi recovery through Blomqvist Beta (Joe, 2014, p. 175)
log(2)/(log(log(2)/log(1+blomCOP(cop=GLcop, para=pi))))

Run the code above in your browser using DataLab