## Not run:
# cdfpath <- file.path(find.package("faahKO"), "cdf")
# my.input.files <- dir(c(paste(cdfpath, "WT", sep='/'),
# paste(cdfpath, "KO", sep='/')), full.names=TRUE)
#
# #
# # create xcmsSet object
# # todo
# xs <- new("xcmsSet")
# # consider only two files!!!
# xs@filepaths <- my.input.files[1:2]
#
# class<-as.data.frame(c(rep("KO",2),rep("WT", 0)))
# rownames(class)<-basename(my.input.files[1:2])
# xs@phenoData<-class
#
# x<-combine_spectra(xs=xs, mzbin=0.25,
# linear=TRUE, continuum=FALSE)
#
# plot(x$mz, x$intensity, type='l',
# xlab='m/Z', ylab='ion intensity')
#
# xy <- peakdetection(x=x$mz, y=x$intensity, scales=1:10,
# SNR.Th=0.0, SNR.area=20, mintr=0.5)
#
# id.peakcenter<-xy[,4]
#
# plot(x$mz, x$intensity, type='l',
# xlim=c(440,460),
# xlab='m/Z', ylab='ion intensity')
#
# points(x$mz[id.peakcenter], x$intensity[id.peakcenter],
# col='red', type='h')
#
#
# # create dummy object
# xs@peaks<-matrix(c(rep(1, length(my.input.files) * 6),
# 1:length(my.input.files)), ncol=7)
#
# colnames(xs@peaks) <- c("mz", "mzmin", "mzmax", "rt",
# "rtmin", "rtmax", "sample")
#
# xs<-xcms::retcor(xs, method="obiwarp", profStep=1,
# distFunc="cor", center=1)
#
#
#
# eicmat<-eicmatrix(xs=xs, xy=xy, center=1)
#
# # process a reduced mz range for a better package build performance
# (eicmat.mz.range<-range(which(475 < xy[,1] & xy[,1] < 485)))
#
# eicmat.filter <- eicmat[eicmat.mz.range[1]:eicmat.mz.range[2],]
# xy.filter <- xy[eicmat.mz.range[1]:eicmat.mz.range[2],]
#
# #
# # determine the new range and plot the mz versus RT map
# (rt.range <- range(as.double(colnames(eicmat.filter))))
# (mz.range<-range(as.double(row.names(eicmat.filter))))
#
# image(log(t(eicmat.filter))/log(2), col=rev(gray(1:20/20)),
# xlab='rt [in seconds]', ylab='m/z', axes=FALSE,
# main='overlay of 12 samples using faahKO')
#
# axis(1, seq(0,1, length=6), round(seq(rt.range[1], rt.range[2], length=6)))
# axis(2, seq(0,1, length=4), seq(mz.range[1], mz.range[2], length=4))
#
# #
# # determine the chromatographic peaks
# rxy<-retention_time(xs=xs, RTscales=c(1:10, seq(12,32, by=2)),
# xy=xy.filter,
# eicmatrix=eicmat.filter,
# RTSNR.Th=120, RTSNR.area=20)
#
# rxy.rt <- (rxy[,4] - rt.range[1])/diff(rt.range)
# rxy.mz <- (rxy[,1] - mz.range[1])/diff(mz.range)
#
# points(rxy.rt, rxy.mz, pch="X", lwd=2, col="red")
#
#
# xs<-create_datamatrix(xs=xs, rxy=rxy)
#
# peaktable <- xcms::peakTable(xs)
#
# head(peaktable)
# ## End(Not run)
Run the code above in your browser using DataLab