Learn R Programming

cudaBayesreg (version 0.3-16)

post.shrinkage.minmax: Computes shrinkage of fitted estimates over regressions

Description

post.shrinkage.minmax computes the maximum and minimum fitted estimates, as a function of the mean regression coefficient estimates over all regressions.

Usage

post.shrinkage.minmax(out, X, vreg, plot=T)

Arguments

out
output of MCMC simulation
X
regression matrix used in the simulation
vreg
number of the regression coefficient
plot
{T,F} output plot (default=T)

Value

yrecmin
minimum values of fitted values
yrecmax
maximum values of fitted values
beta
mean of estimated coefficients over all regressions

Details

The plot helps visualizing shrinkage by analyzing the influence of the hyperparameter $nu$ on the dispersion of the fitted maximum and minimum estimates. Different shrinkage plots may be compared for simulations with different $nu$ values.

See Also

cudaMultireg.slice, read.fmrislice

Examples

Run this code
## Not run: 
# slicedata <- read.fmrislice(fbase="fmri", slice=3, swap=FALSE)
# ymaskdata <- premask(slicedata)
# fsave <- paste(tempdir(),"/simultest1",fileext = ".sav", sep="")
# nu1 <- 3
# out <- cudaMultireg.slice(slicedata, ymaskdata, R=2000, keep=5, nu.e=nu1,
#   fsave=fsave1, zprior=FALSE, rng=1)
# vreg <- 2
# post.shrinkage.minmax(out, slicedata$X, vreg=vreg) 
# ## End(Not run)

Run the code above in your browser using DataLab