set.seed(10000)
n=100
y=rbinom(n,1,0.4)
p=50
x=matrix(rnorm(n*p),n,p)
nkappa=5
maxkappa=0.249
nlambda=20
## MCP penalty
penalty="mcp"
approach="mmcd"
path="kappa"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa,
nlambda)
path="lambda"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
path="hybrid"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
approach="adaptive"
path="kappa"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
path="lambda"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
path="hybrid"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
## using LLA approach, path option has no effect.
approach="llacda"
maxkappa=0.99
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
## SCAD penalty
maxkappa=0.19
penalty="scad"
path="kappa"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
path="lambda"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
path="hybrid"
out=aic.cvplogistic(y, x, penalty, approach, path, nkappa, maxkappa, nlambda)
Run the code above in your browser using DataLab