Learn R Programming

DAL Toolbox

As research experiments grow in scale and complexity, data analytics demands tools that go beyond isolated functions. DAL Toolbox is a framework designed to meet these modern challenges by organizing a comprehensive set of data analytics capabilities into an integrated workflow environment. Inspired by the Experiment Line model doi:10.1007/978-3-642-02279-1_20, it supports essential tasks such as data preprocessing, classification, regression, clustering, and time series prediction. With a unified data model, consistent method API, and support for hyperparameter tuning, DAL Toolbox enables the seamless construction and execution of end-to-end analytics pipelines. It also offers easy integration with existing libraries and languages, promoting usability, extensibility, and reproducibility in data science.


Examples

Graphics: https://github.com/cefet-rj-dal/daltoolbox/tree/main/graphics/

Transformation: https://github.com/cefet-rj-dal/daltoolbox/tree/main/transf/

Classification: https://github.com/cefet-rj-dal/daltoolbox/tree/main/classification/

Clustering: https://github.com/cefet-rj-dal/daltoolbox/tree/main/clustering/

Regression: https://github.com/cefet-rj-dal/daltoolbox/tree/main/regression/

The examples are organized according to general (data preprocessing), clustering, classification, regression, and time series functions.


Installation

The latest version of DAL Toolbox at CRAN is available at: https://CRAN.R-project.org/package=daltoolbox

You can install the stable version of DAL Toolbox from CRAN with:

install.packages("daltoolbox")

You can install the development version of DAL Toolbox from GitHub https://github.com/cefet-rj-dal/daltoolbox with:

library(devtools)
devtools::install_github("cefet-rj-dal/daltoolbox", force=TRUE, dependencies=FALSE, upgrade="never")

Bugs and new features request

https://github.com/cefet-rj-dal/daltoolbox/issues

Copy Link

Version

Install

install.packages('daltoolbox')

Monthly Downloads

1,083

Version

1.2.747

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Eduardo Ogasawara

Last Published

October 27th, 2025

Functions in daltoolbox (1.2.747)

dal_graphics

Graphics utilities
cluster_dbscan

DBSCAN
cluster_kmeans

k-means
clusterer

Clusterer
cluster

Cluster
dal_transform

DAL Transform
dal_base

Class dal_base
dal_tune

DAL Tune (base for hyperparameter search)
dal_learner

DAL Learner (base class)
cluster_pam

PAM (Partitioning Around Medoids)
evaluate

Evaluate
data_sample

Data sampling abstractions
fit_curvature_max

Maximum curvature analysis (elbow detection)
fit_curvature_min

Minimum curvature analysis (elbow detection)
inverse_transform

Inverse Transform
k_fold

K-fold sampling
plot_hist

Plot histogram
fit.cla_tune

tune hyperparameters of ml model
outliers_boxplot

Outlier removal by boxplot (IQR rule)
plot_boxplot

Plot boxplot
dt_pca

PCA
minmax

Min-max normalization
fit.cluster_dbscan

fit dbscan model
plot_groupedbar

Plot grouped bar
plot_bar

Plot bar graph
plot_boxplot_class

Boxplot per class
outliers_gaussian

Outlier removal by Gaussian 3-sigma rule
fit

Fit
plot_ts_pred

Plot time series with predictions
plot_points

Plot points
plot_pieplot

Plot pie
plot_density_class

Plot density per class
plot_lollipop

Plot lollipop
plot_radar

Plot radar
plot_scatter

Scatter graph
plot_density

Plot density
plot_series

Plot series
plot_stackedbar

Plot stacked bar
plot_ts

Plot time series chart
reg_dtree

Decision Tree for regression
select_hyper

Selection of hyperparameters
predictor

Predictor (base for classification/regression)
reg_svm

SVM for regression
reg_mlp

MLP for regression
reg_knn

K-Nearest Neighbors (KNN) Regression
reg_rf

Random Forest for regression
reg_tune

Regression tuning (k-fold CV)
sample_stratified

Stratified sampling
sample_random

Random sampling
regression

Regression base class
train_test_from_folds

k-fold training and test partition object
select_hyper.cla_tune

selection of hyperparameters
set_params

Assign parameters
smoothing_freq

Smoothing by equal frequency
smoothing

Smoothing (binning/quantization)
smoothing_cluster

Smoothing by clustering (k-means)
set_params.default

Default Assign parameters
train_test

Train-Test Partition
smoothing_inter

Smoothing by equal interval
zscore

Z-score normalization
transform

Transform
adjust_factor

Adjust factors
action.dal_transform

Action implementation for transform
adjust_matrix

Adjust to matrix
autoenc_base_e

Autoencoder base (encoder)
autoenc_base_ed

Autoencoder base (encoder + decoder)
adjust_class_label

Adjust categorical mapping
action

Action
adjust_data.frame

Adjust to data frame
categ_mapping

Categorical mapping (one‑hot encoding)
Boston

Boston Housing Data (Regression)
cla_tune

Classification tuning (k-fold CV)
cla_svm

SVM for classification
cla_mlp

MLP for classification
cla_majority

Majority baseline classifier
cla_rf

Random Forest for classification
cla_nb

Naive Bayes Classifier
classification

Classification base class
clu_tune

Clustering tuning (intrinsic metric)
cla_dtree

Decision Tree for classification
cla_knn

K-Nearest Neighbors (KNN) Classification