powered by
Standardize numeric columns to zero mean and unit variance, optionally rescaled to a target mean (nmean) and sd (nsd).
nmean
nsd
zscore(nmean = 0, nsd = 1)
returns the z-score transformation object
new mean for normalized data
new standard deviation for normalized data
For each numeric column j, computes ((x - mean_j)/sd_j) * nsd + nmean. Constant columns become nmean.
\(zscore = (x - mean(x))/sd(x)\)
Han, J., Kamber, M., Pei, J. (2011). Data Mining: Concepts and Techniques. (Standardization)
data(iris) head(iris) trans <- zscore() trans <- fit(trans, iris) tiris <- transform(trans, iris) head(tiris) itiris <- inverse_transform(trans, tiris) head(itiris)
Run the code above in your browser using DataLab