Learn R Programming

Python-Based Extensions for Data Analytics Workflows

Python-Based Extensions for Data Analytics Workflows provides Python-based extensions to enhance data analytics workflows, particularly for tasks involving data preprocessing and predictive modeling. It includes tools for:

  • Data sampling and transformation
  • Feature selection
  • Balancing strategies (e.g., SMOTE)
  • Model construction and tuning

These capabilities leverage Python libraries via the reticulate interface, enabling seamless integration with the broader Python machine learning ecosystem. The package supports instance selection and hybrid workflows that combine R and Python functionalities for flexible and reproducible analytical pipelines.

The architecture is inspired by the Experiment Lines approach, which promotes modularity, extensibility, and interoperability across tools.
More information on Experiment Lines is available in Ogasawara et al. (2009).


Examples

Example scripts are available at:


Installation

You can install the latest stable version from CRAN:

install.packages("daltoolboxdp")

To install the development version from GitHub:

library(devtools)
devtools::install_github("cefet-rj-dal/daltoolboxdp", force = TRUE, dependencies = FALSE, upgrade = "never")

Bug reports and feature requests

Please report issues or suggest new features via:

Copy Link

Version

Install

install.packages('daltoolboxdp')

Monthly Downloads

255

Version

1.2.737

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Eduardo Ogasawara

Last Published

October 27th, 2025

Functions in daltoolboxdp (1.2.737)

autoenc_adv_e

Adversarial Autoencoder - Encode
autoenc_lstm_ed

LSTM Autoencoder - Encode-Decode
autoenc_lstm_e

LSTM Autoencoder - Encode
autoenc_stacked_e

Stacked Autoencoder - Encode
autoenc_stacked_ed

Stacked Autoencoder - Encode-Decode
fs_fss

Forward Stepwise Selection
fs

Feature Selection
autoenc_e

Autoencoder - Encode
autoenc_ed

Autoencoder - Encode-Decode
autoenc_variational_e

Variational Autoencoder - Encode
autoenc_conv_e

Convolutional Autoencoder - Encode
autoenc_conv_ed

Convolutional Autoencoder - Encode-Decode
skcla_nb

Gaussian Naive Bayes Classifier
ts_lstm

LSTM
skcla_rf

Random Forest Classifier
ts_conv1d

Conv1D
skcla_svc

Support Vector Machine Classification
bal_oversampling

Oversampling
autoenc_variational_ed

Variational Autoencoder - Encode-Decode
bal_subsampling

Subsampling
skcla_mlp

Multi-layer Perceptron Classifier
skcla_knn

K-Nearest Neighbors Classifier
fs_relief

Relief
skcla_gb

Gradient Boosting Classifier
autoenc_denoise_e

Denoising Autoencoder - Encode
autoenc_denoise_ed

Denoising Autoencoder - Encode-Decode
fs_ig

Information Gain
fs_lasso

LASSO Feature Selection
autoenc_adv_ed

Adversarial Autoencoder - Encode-Decode