Learn R Programming

daltoolboxdp (version 1.2.737)

bal_oversampling: Oversampling

Description

Oversampling balances class distributions by increasing the representation of minority classes using synthetic samples. This implementation leverages smotefamily (SMOTE and variants).

Usage

bal_oversampling(attribute)

Value

A bal_oversampling object.

Arguments

attribute

Character. Name of the target class attribute to balance.

References

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique.

Examples

Run this code
if (FALSE) {
data(iris)

# 1) Induce imbalance by subsetting species
mod_iris <- iris[c(1:50, 51:71, 101:111), ]
table(mod_iris$Species)

# 2) Oversample minority classes using SMOTE
bal <- bal_oversampling('Species')
bal <- daltoolbox::fit(bal, mod_iris)
adjust_iris <- daltoolbox::transform(bal, mod_iris)

# 3) Inspect new class distribution
table(adjust_iris$Species)  # more balanced counts
}

Run the code above in your browser using DataLab