lambdamax.diag: Maximum Eigenvalue of the Posterior Variance-Covariance Matrix
Description
Calculates the maximum eigenvalue of the posterior variance-covariance matrix
Usage
lambdamax.diag(x)
chisq.diag(x)
Arguments
x
An object of class mcmc or mcmc.list.
Value
Returns a single vaue, the maximum of the eigenvalues of the
unscaled variance covariance matrix of the estimated parameters.
Details
This diagnostics can be used to test for the data cloning convergence.
Asymptotically the posterior distribution of the parameters approaches
a degenerate multivariate normal distribution. As the distribution
is getting more degenerate, the maximal eigenvalue ($\lambda_{max}$)
of the unscaled covariance matrix is decreasing.
If only one parameter is dealt with, the unscaled posterior standard
error is given.
There is no critical value under which $\lambda_{max}$ is good enough.
By default, 0.1 is used (see getOption("dclone.crit")).
References
Lele, S.R., B. Dennis and F. Lutscher, 2007.
Data cloning: easy maximum likelihood estimation for complex
ecological models using Bayesian Markov chain Monte Carlo methods.
Ecology Letters10, 551--563.