Learn R Programming

⚠️There's a newer version (1.4.1) of this package.Take me there.

dials

Overview

This package contains infrastructure to create and manage values of tuning parameters for the tidymodels packages. If you are looking for how to tune parameters in tidymodels, please look at the tune package and tidymodels.org.

The name reflects the idea that tuning predictive models can be like turning a set of dials on a complex machine under duress.

Installation

You can install the released version of dials from CRAN with:

install.packages("dials")

You can install the development version from Github with:

# install.packages("pak")
pak::pak("tidymodels/dials")

Contributing

Please note that the dials project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

Copy Link

Version

Install

install.packages('dials')

Monthly Downloads

30,745

Version

1.2.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Hannah Frick

Last Published

April 3rd, 2023

Functions in dials (1.2.0)

encode_unit

Class for converting parameter values back and forth to the unit range
finalize

Functions to finalize data-specific parameter ranges
dials-package

dials: Tools for working with tuning parameters
class_weights

Parameters for class weights for imbalanced problems
deg_free

Degrees of freedom (integer)
conditional_min_criterion

Parameters for possible engine parameters for partykit models
degree

Parameters for exponents
num_leaves

Possible engine parameters for lightbgm
learn_rate

Learning rate
min_dist

Parameter for the effective minimum distance between embedded points
dist_power

Minkowski distance parameter
bart-param

Parameters for BART models These parameters are used for constructing Bayesian adaptive regression tree (BART) models.
mixture

Mixture of penalization terms
max_num_terms

Parameters for possible engine parameters for earth models
dropout

Neural network parameters
confidence_factor

Parameters for possible engine parameters for C5.0
momentum

Gradient descent momentum parameter
neighbors

Number of neighbors
num_comp

Number of new features
prune_method

MARS pruning methods
new-param

Tools for creating new parameter objects
mtry

Number of randomly sampled predictors
num_knots

Number of knots (integer)
mtry_prop

Proportion of Randomly Selected Predictors
parameters_constr

Construct a new parameter set object
penalty

Amount of regularization/penalization
pull_dials_object

Return a dials parameter object associated with parameters
freq_cut

Near-zero variance parameters
min_unique

Number of unique values for pre-processing
max_nodes

Parameters for possible engine parameters for randomForest
grid_max_entropy

Space-filling parameter grids
reexports

Objects exported from other packages
num_runs

Number of Computation Runs
regularization_method

Estimation methods for regularized models
trim_amount

Amount of Trimming
num_tokens

Parameter to determine number of tokens in ngram
grid_regular

Create grids of tuning parameters
vocabulary_size

Number of tokens in vocabulary
select_features

Parameter to enable feature selection
predictor_prop

Proportion of predictors
scheduler-param

Parameters for neural network learning rate schedulers These parameters are used for constructing neural network models.
max_times

Word frequencies for removal
range_validate

Tools for working with parameter ranges
regularization_factor

Parameters for possible engine parameters for ranger
max_tokens

Maximum number of retained tokens
weight

Parameter for "double normalization" when creating token counts
type_sum.param

Succinct summary of parameter objects
prior_slab_dispersion

Bayesian PCA parameters
rbf_sigma

Kernel parameters
weight_func

Kernel functions for distance weighting
threshold

General thresholding parameter
num_hash

Text hashing parameters
weight_scheme

Term frequency weighting methods
token

Token types
over_ratio

Parameters for class-imbalance sampling
parameters

Information on tuning parameters within an object
stop_iter

Early stopping parameter
trees

Parameter functions related to tree- and rule-based models.
harmonic_frequency

Harmonic Frequency
num_breaks

Number of cut-points for binning
smoothness

Kernel Smoothness
shrinkage_correlation

Parameters for possible engine parameters for sda models
num_clusters

Number of Clusters
summary_stat

Rolling summary statistic for moving windows
validation_set_prop

Proportion of data used for validation
value_validate

Tools for working with parameter values
survival_link

Survival Model Link Function
window_size

Parameter for the moving window size
surv_dist

Parametric distributions for censored data
scale_pos_weight

Parameters for possible engine parameters for xgboost
unknown

Placeholder for unknown parameter values
update.parameters

Update a single parameter in a parameter set
all_neighbors

Parameter to determine which neighbors to use
Laplace

Laplace correction parameter
adjust_deg_free

Parameters to adjust effective degrees of freedom
cost

Support vector machine parameters
extrapolation

Parameters for possible engine parameters for Cubist
activation

Activation functions between network layers