# NOT RUN {
## get the test statistics and pre-calculated LD matrix
stt <- readRDS(system.file("extdata", 'art_zsc.rds', package="dotgen"))
sgm <- readRDS(system.file("extdata", 'art_ldm.rds', package="dotgen"))
## decorrelated chi-square test
result <- dot_chisq(stt, sgm)
print(result$Y) # 37.2854
print(result$P) # 0.0003736988
## decorrelated Fisher's combined P-value chi-square test
result <- dot_fisher(stt, sgm)
print(result$Y) # 58.44147
print(result$P) # 0.0002706851
## decorrelated augmented rank truncated (ART) test.
result <- dot_art(stt, sgm, k=6)
print(result$Y) # 22.50976
print(result$P) # 0.0006704994
## decorrelated Augmented Rank Truncated Adaptive (ARTA) test
result <- dot_arta(stt, sgm, k=6)
print(result$Y) # -1.738662
print(result$k) # 5 smallest P-values are retained
print(result$P) # 0.003165 (varies)
## decorrelated Rank Truncated Product (RTP)
result <- dot_rtp(stt, sgm, k=6)
print(result$Y) # 22.6757
print(result$P) # 0.0007275518
## decorrelated Truncated Product Method (TPM)
result <- dot_tpm(stt, sgm, tau=0.05)
print(result$Y) # 1.510581e-08
print(result$k) # 6 P-values <= tau
print(result$P) # 0.0007954961
# }
Run the code above in your browser using DataLab