Learn R Programming

drc (version 2.0-1)

mr.test: Mizon-Richard test for dose-response models

Description

The function provides a lack-of-fit test for the mean structure based on the Mizon-Richard test as compared to a specific alternative model.

Usage

mr.test(object1, object2, object, x, var.equal = TRUE, component = 1)

Arguments

object1
object of class 'drc' (null model).
object2
object of class 'drc' (alternative model).
object
object of class 'drc' (fitted model under alternative).
x
numeric vector of dose values.
var.equal
logical indicating whether or not equal variances can be assumed across doses.
component
numeric vector specifying the component(s) in the parameter vector to use in the test.

Value

  • A p-value for test of the null hypothesis that the chosen mean structure is appropriate as compared to the alternative mean structure provided. Ritz and Martinussen (2009) provide the details.

Details

The function provides a p-value indicating whether or not the mean structure is appropriate. The test is applicable even in cases where data are non-normal or exhibit variance heterogeneity.

References

Ritz, C and Martinussen, T. (2009) Lack-of-fit tests for assessing mean structures for continuous dose-response data, Submitted manuscript

See Also

See also modelFit for details on the lack-of-fit test against an ANOVA model.

Examples

Run this code
## Fitting log-logistic and Weibull models 
## The Weibull model is the alternative
etmotc.m1<-drm(rgr1~dose1, data=etmotc[1:15,], fct=LL.4())
etmotc.m2 <- update(etmotc.m1, fct=W1.4())

## Fitting the fitted model (using the alternative model)
etmotc.m3 <- drm(fitted(etmotc.m1)~dose1, data=etmotc[1:15,], fct=W1.4())

## Handling missing values
xVec <- etmotc[1:15,]$dose1
xVec[1:8] <- 1e-10  # avoiding 0's

## Obtaining the Mizon-Richard test
mr.test(etmotc.m1, etmotc.m2, etmotc.m3, xVec, var.equal = FALSE)

Run the code above in your browser using DataLab