## Fitting an example dose-response model
ryegrass.m1 <- drm(rootl~conc, data = ryegrass, fct = LL.4())
## Comparing models (showing the AIC values)
mselect(ryegrass.m1,
list(LL.5(), LN.4(), W1.4(), W2.4(), FPL.4(-1,1), FPL.4(-2,3), FPL.4(-0.5,0.5)))
## Doing the actual model-averaging
maED(ryegrass.m1,
list(LL.5(), LN.4(), W1.4(), W2.4(), FPL.4(-1,1), FPL.4(-2,3), FPL.4(-0.5,0.5)),
c(10, 50, 90))
## With confidence intervals according to Buckland et al. (1997)
maED(ryegrass.m1,
list(LL.5(), LN.4(), W1.4(), W2.4(), FPL.4(-1,1), FPL.4(-2,3), FPL.4(-0.5,0.5)),
c(10, 50, 90), "buckland")
## With confidence intervals according to Kang et al. (2000)
maED(ryegrass.m1,
list(LL.5(), LN.4(), W1.4(), W2.4(), FPL.4(-1,1), FPL.4(-2,3), FPL.4(-0.5,0.5)),
c(10, 50, 90), "kang")
## Comparing to model-averaged ED values with simple linear regression included
maED(ryegrass.m1,
list(LL.5(), LN.4(), W1.4(), W2.4(), FPL.4(-1,1), FPL.4(-2,3), FPL.4(-0.5,0.5)),
c(10, 50, 90), interval = "buckland", linreg = TRUE)
## Example with a model fit involving two compounds/curves
S.alba.m1 <- drm(DryMatter~Dose, Herbicide, data=S.alba, fct = LL.4(),
pmodels=data.frame(Herbicide,1,1,Herbicide))
## Model-averaged ED50 for both compounds
maED(S.alba.m1, list(LL.3(), LN.4()), 50)
## Model-averaged ED50 only for one compound (glyphosate)
maED(S.alba.m1, list(LL.3(), LN.4()), 50, clevel="Glyphosate")
## With confidence intervals
maED(S.alba.m1, list(LL.3(), LN.4()), 50, interval="buckland")
## For comparison model-specific confidence intervals
ED(S.alba.m1, 50, interval="delta") # wider!
Run the code above in your browser using DataLab