Learn R Programming

dsfa (version 2.0.2)

Distributional Stochastic Frontier Analysis

Description

Framework to fit distributional stochastic frontier models. Casts the stochastic frontier model into the flexible framework of distributional regression or otherwise known as General Additive Models of Location, Scale and Shape (GAMLSS). Allows for linear, non-linear, random and spatial effects on all the parameters of the distribution of the output, e.g. effects on the production or cost function, heterogeneity of the noise and inefficiency. Available distributions are the normal-halfnormal and normal-exponential distribution. Estimation via the fast and reliable routines of the 'mgcv' package. For more details see .

Copy Link

Version

Install

install.packages('dsfa')

Monthly Downloads

42

Version

2.0.2

License

MIT + file LICENSE

Maintainer

Rouven Schmidt

Last Published

July 19th, 2023

Functions in dsfa (2.0.2)

derivs_transform

derivs_transform
delta_bounds

Bounds of Copula Parameter delta
differencerule

Differencerule
dnormhnorm

Normal-halfnormal distribution
efficiency

efficiency
ind2joint

Independent to joint function
dnormexp

Normal-Exponential distribution
dsfa

dsfa-package: Distributional Stochastic Frontier Analysis
elasticity

elasticity
list2derivs

list2derivs
manuf

NBER-CES Manufacturing Dairy Data
trind_generator

Trind_generator function
par2mom

Parameter to Moments
sumrule

Sumrule
quotientrule

Quotientrule
mom2par

Moments to Parameters
transform

transform
trind

trind function
productrule

Productrule
BurkinaFarms_polys

BurkinaFarms_polys
dcomper_mv

Multivariate Composed-Error distribution
comper_mv

comper
chainrule

Chainrule
comper

comper
cop

cop
cdf2quantile

Inverse cumulative distribution function
dcop

Copula function
dcomper

Composed-Error distribution
BurkinaFarms

BurkinaFarms