Returns an object of class derivs for the function \(h(\cdot)\).
Arguments
f_list
list of derivs objects of length \(M\), e.g. \(list(f_1(\cdot), f_2(\cdot),...,f_M(\cdot))\)
tri
list; created by the function [trind_generator()].
deriv_order
integer; maximum order of derivative. Available are 0,2 and 4.
Details
Let \(f_m\) be a function defined in [trind()], where \(m \in {1,...,M}\).
Define \(h((x_{n1},x_{n2},...,x_{nK})) = f_1(\cdot) + f_2(\cdot) ... + f_M(x_{n1},x_{n2},...,x_{nK}))\).
In order to get the derivatives of \(h(\cdot)\) w.r.t all parameters \(x_{nk}\), the sumrule is applied.
For more details see [trind()] and [trind_generator()].