Learn R Programming

⚠️There's a newer version (1.1-18) of this package.Take me there.

ecespa (version 1.1-1)

Functions for spatial point pattern analysis

Description

Some wrappers, functions and data sets for for spatial point pattern analysis (mainly based on spatstat), used in the book "Introduccion al Analisis Espacial de Datos en Ecologia y Ciencias Ambientales: Metodos y Aplicaciones".

Copy Link

Version

Install

install.packages('ecespa')

Monthly Downloads

407

Version

1.1-1

License

GPL (>=2)

Maintainer

Marcelino de la Cruz

Last Published

May 1st, 2025

Functions in ecespa (1.1-1)

Kmm

Mark-weighted K-function
sim.poissonc

Simulate Poisson Cluster Process
gypsophylous

Spatial point pattern of a plant community
ipc.estK

Fit the (In)homogeneous Poisson Cluster Point Process by Minimum Contrast
K1K2

Differences between univariate and bivariate K-functions
rIPCP

Simulate Inhomogeneous Poisson Cluster Process
Kinhom.log

Simulation envelopes from the fitted values of a logistic model
ecespa

Functions for spatial point pattern analysis in ecology
marksum

Mark-sum measure
quercusvm

Alive and dead oak trees
pc.estK

Fit the Poisson Cluster Point Process by Minimum Contrast
Helianthemum

Spatial point pattern of Helianthemum squamatum adult plants and seedlings
dixon2002

Dixon (2002) Nearest-neighbor contingency table analysis
p2colasr

P-value for a discrete distribution on small sample data
K012

Tests against 'independent labelling'
seedlings

Cohorts of Helianthemum squamatum seedlings
getis

Neighbourhood density function
ecespa-internal

Internal ecespa functions.
haz.ppp

Easily convert xy data to ppp format
syrjala

Syrjala's test for the difference between the spatial distributions of two populations
Kmulti.ls

Lotwick's and Silverman's combined estimator of the marked K-function
swamp

Tree Species in a Swamp Forest
Kci

Test against non-Poisson (in-)homogeneous models
figuras

Artificial point data.
syrjala.data

Syrjala test data