Kmm(mippp, r = 1:10, nsim=NULL)
## S3 method for class 'ecespa.kmm':
plot (x, type="Kmm.n", q=0.025,
xlime=NULL, ylime=NULL, maine=NULL, add=FALSE, kmean=TRUE,
ylabe=NULL, xlabe=NULL, lty=c(1,2,3), col=c(1,2,3), lwd=c(1,1,1),
...)
ppp
format of Kmm
is estimated.Kmm
to a marked point pattern."Kmm"
("plain" mark-weighted K-function) or
"Kmm.n"
(normalized mark-weighted K-function).Kmm
returns an object of class 'ecespa.kmm'
, basically a list with the following items:Kmm
is estimated.NULL
if none.NULL
if none.NULL
if none.nsim != NULL
, Kmm
computes 'simulation envelopes' from the simulated point patterns. These are simulated from nsim
random permutations
of the marks over the points coordinates. This is a kind of pointwise test of $Kmm(r) == 1$ or $normalized Kmm(r) == 1$ for a given $r$.=>markcorr
## Figure 3.10 of De la Cruz (2008):
data(seedlings1)
data(seedlings2)
s1km <- Kmm(seedlings1, r=1:100)
s2km <- Kmm(seedlings2, r=1:100)
plot(s1km, ylime=c(0.6,1.2), lwd=2, maine="", xlabe="r(cm)")
plot(s2km, lwd=2, lty=2, add=T )
abline(h=1, lwd=2, lty=3)
legend(x=60, y=1.2, legend=c("Hs_C1", "Hs_C2", "H0"),
lty=c(1, 2, 3), lwd=c(3, 2, 2), bty="n")
## A pointwise test of normalized Kmm == 1 for seedlings1:
s1km.test <- Kmm(seedlings1, r=1:100, nsim=99)
plot(s1km.test, xlabe="r(cm)")
Run the code above in your browser using DataLab