Learn R Programming

⚠️There's a newer version (2.4) of this package.Take me there.

eggCounts (version 0.4-1)

Hierarchical Modelling of Faecal Egg Counts

Description

An implementation of hierarchical models for faecal egg count data to assess anthelmintic efficacy. Bayesian inference is done via MCMC sampling.

Copy Link

Version

Install

install.packages('eggCounts')

Monthly Downloads

323

Version

0.4-1

License

GPL (>= 2)

Maintainer

Reinhard Furrer

Last Published

February 13th, 2015

Functions in eggCounts (0.4-1)

checkAR

Check acceptance rates
MHstep

Do a Metropolis-Hastings step
fecr_mcmc

Modelling of Faecal Egg Count data (two-sample case)
fecrtCI

Compute standard FECRT according to WAAVP guidelines
setDefaults1

Set default values for the one-sample (ZI)PoGa model formulation
modeCurvature_h

Compute mode and curvature at the mode of a full conditional of form $h(x) = x^{-a} \exp(-bx -c/x)$
echinococcus

Faecal egg count sample
MH_RW_unif

MH step with uniform (truncated at 0) proposal around the current value
setInitials2

Set initial values for all parameters of the two-sample (ZI)PoGa model
eggCounts-package

Hierarchical modelling of faecal egg counts
samples2mcmc

Convert the list with samples to a mcmc object
simData1s

Simulate faecal egg count data (1-sample situation)
setDefaults2

Set default values for the two-sample (ZI)PoGa model formulation
logdgammaMixture

Compute log density of a gamma mixture
setUpdates_ZIPoGa_u

Specify parameter updates for ZIPoGa_u (2-sample) model
setInitials1

Set initial values for all parameters of the one-sample (ZI)PoGa model
modeCurvature_phi

Numerically compute mode and curvature at the mode of a full conditional for $\phi$ of form -(n*phi+a-1)*log(phi) + n*lgamma(phi) + n*phi*log(mu)- (phi-1)*logprodmu + phi*(summu.mu+b)
setUpdates_ZIPoGa_mu

Specify parameter updates for PoGa (1-sample) model
epgs

Faecal egg count samples (before and after treatment)
update_theta_gammaMix

Update a parameter vector theta $theta_1,\ldots,theta_n$ based on a gamma mixture distribution
statusMsg

Print information about the progress of the MCMC run
simData2s

Simulate faecal egg count data (2-sample situation)
fec_mcmc

Modelling of Faecal Egg Count data (one-sample case)
update_h_logNormal

Update the parameter $theta$ (with FC of form h) using a lognormal approximation to the FC as proposal
update_phi_unif

Update the overdispersion parameter $phi$ using a uniform random walk proposal
setUpdates_PoGa_mu

Specify parameter updates for PoGa (1-sample) model
update_theta_beta

Update a parameter $theta$ based on a beta distribution
update_theta_gammaAdd

Update a parameter vector theta $theta_1,\ldots,theta_n$ based on a gamma distribution using a gamma proposal with slightly shifted shape parameter to avoid to small theta
update_Y

Update latent egg counts $y_1,\ldots,y_n$ based on a truncated Poisson distribution
update_psi_beta

Update the zero-inflation parameter $psi$ using a beta approximation to the FC as proposal
setUpdates_ZIPoGa2

Specify parameter updates for PoGa2 (1-sample) model
setUpdates_PoGa_u

Specify parameter updates for PoGa_u (unpaired 2-sample) model
update_theta_gamma1

Update a parameter $theta$ based on a gamma distribution
update_h_gamma

Update the parameter $theta$ (with FC of form $h(x) = x^{-a} \exp(-bx -c/x)$) using a gamma approximation to the FC as proposal
update_delta_beta

Update the reduction in mean parameter $delta$ using a beta approximation to the FC as proposal
update_theta_gamma

Update a parameter vector theta $theta_1,\ldots,theta_n$ based on a gamma distribution
setUpdates_PoGa2

Specify parameter updates for PoGa2 (1-sample) model
modeCurvature_delta

Compute mode and curvature at the mode of a full conditional of form $h(x) = x^{a} (1-x)^{b} \exp(-c x)$
tab1morgan

Abundance of trichostrongyloid eggs in sheep faeces
update_phi_gamma

Update the overdispersion parameter $phi$ using a gamma approximation to the FC as proposal
print.fecrm

Print information about mcmc run
fc_approx_logNormal

Approximate a full conditional with given mode and curvature by a log normal distribution
MH_RW_unif01

MH step with uniform (truncated at 0 and 1) proposal around the current value
setUpdates_PoGa_p

Specify parameter updates for PoGa_p (paired 2-sample) model
modeCurvature_psi

Compute mode and curvature at the mode of a full conditional of form $h(x) = (1-d x)^{a} (1-x)^{b} x^{c}$
print.fecm

Print information about mcmc run
update_h_invGamma

Update the parameter $theta$ (with FC of form h) using an inverse gamma approximation to the FC as proposal
fc_approx_beta

Approximate a full conditional with given mode and curvature by a beta distribution
fc_approx_invgamma

Approximate a full conditional with given mode and curvature by an inverse gamma distribution
fc_approx_gamma

Approximate a full conditional with given mode and curvature by a gamma distribution
setUpdates_ZIPoGa_u_pd

Specify parameter updates for ZIPoGa_u_pd (2-sample) model
update_h_kl

Update the parameter $theta$ (with FC of form $h(x) = x^{-a} \exp(-bx -c/x)$)) using eiter a gamma or an inverse gamma approximation to the FC as proposal depending on which distribution has smaller KL divergence.