Learn R Programming

eggCounts (version 0.4-1)

setDefaults2: Set default values for the two-sample (ZI)PoGa model formulation

Description

Set default values for the two-sample (ZI)PoGa model formulation

Usage

setDefaults2(priors.mu, priors.phi, priors.delta, priors.psiB, priors.psiA,
  priors.deltaPsi)

Arguments

priors.mu
named list with hyperprior specifications for $\mu$, containing elements hyperpars and proposalDist
priors.phi
named list with hyperprior specifications for the overdispersion parameter $\phi$, containing elements hyperpars, proposalDist (unif or gamma) and in the case of a uniform proposal also a tuning parameter v
priors.delta
named list with hyperprior specifications for the reduction in mean $\delta$, containing elements hyperpars and proposalDist
priors.psiB
named list with hyperprior specifications for the prevalence $\psi_B$ before treatment, containing elements hyperpars
priors.psiA
named list with hyperprior specifications for the prevalence $\psi_A$ after treatment, containing elements hyperpars
priors.deltaPsi
named list with hyperprior specifications for the reduction in prevalence $\delta_\psi$, containing elements hyperpars and proposalDist

Value

  • A named list with prior specifications for $\mu$, $\phi$, $\delta$ and $\psi_B$, $\psi_A$. Default prior distributions are:
  • mugamma[1, 0.001]
  • phigamma[1, 0.1]
  • deltagamma[1, 1]
  • psiBbeta[1, 1]
  • psiAbeta[1, 1]
  • deltaPsibeta[1, 1]
  • Default proposal distributions for $\mu$, $\phi$ and $\delta$ (in the unpaired situation) are:
  • muapproximating inverse gamma, gamma or log-normal distribution
  • phiunif[max(current.value - v,0), current.value + v], with $v=0.5$
  • deltaapproximating inverse gamma, gamma or log-normal distribution