# J

0th

Percentile

##### Various modular functions

Modular functions including Klein's modular function J (aka Dedekind's Valenz function J, aka the Klein invariant function, aka Klein's absolute invariant), the lambda function, and Delta.

Keywords
math
##### Usage
J(tau, use.theta = TRUE, ...)
lambda(tau, ...)
##### Arguments
tau

$\tau$; it is assumed that Im(tau)>0

use.theta

Boolean, with default TRUE meaning to use the theta function expansion, and FALSE meaning to evaluate g2 and g3 directly

Extra arguments sent to either theta1() et seq, or g2.fun() and g3.fun() as appropriate

##### References

K. Chandrasekharan 1985. Elliptic functions, Springer-Verlag.

• J
• lambda
##### Examples
# NOT RUN {
J(2.3+0.23i,use.theta=TRUE)
J(2.3+0.23i,use.theta=FALSE)

#Verify that J(z)=J(-1/z):
z <- seq(from=1+0.7i,to=-2+1i,len=20)
plot(abs((J(z)-J(-1/z))/J(z)))

# Verify that lamba(z) = lambda(Mz) where M is a modular matrix with b,c
# even and a,d odd:

M <- matrix(c(5,4,16,13),2,2)
z <- seq(from=1+1i,to=3+3i,len=100)
plot(lambda(z)-lambda(M %mob% z,maxiter=100))

#Now a nice little plot; vary n to change the resolution:
n <- 50
x <- seq(from=-0.1, to=2,len=n)
y <- seq(from=0.02,to=2,len=n)

z <- outer(x,1i*y,"+")
f <- lambda(z,maxiter=40)
g <- J(z)
view(x,y,f,scheme=04,real.contour=FALSE,main="try higher resolution")
view(x,y,g,scheme=10,real.contour=FALSE,main="try higher resolution")

# }

Documentation reproduced from package elliptic, version 1.4-0, License: GPL-2

### Community examples

Looks like there are no examples yet.