# coqueraux

0th

Percentile

##### Fast, conceptually simple, iterative scheme for Weierstrass P functions

Fast, conceptually simple, iterative scheme for Weierstrass $\wp$ functions, following the ideas of Robert Coqueraux

Keywords
math
##### Usage
coqueraux(z, g, N = 5, use.fpp = FALSE, give = FALSE)
##### Arguments
z

Primary complex argument

g

Invariants; if an object of type parameters is supplied, the invariants will be extracted appropriately

N

Number of iterations to use

use.fpp

Boolean, with default FALSE meaning to not reduce z to the fpp. Setting to TRUE reduces z to the fpp via parameters(): this is more accurate (see example) but slower

give

Boolean, with TRUE meaning to return an estimate of the error, and FALSE meaning to return just the value

##### References

R. Coqueraux, 1990. Iterative method for calculation of the Weierstrass elliptic function, IMA Journal of Numerical Analysis, volume 10, pp119-128

• coqueraux
##### Examples
# NOT RUN {
z <- seq(from=1+1i,to=30-10i,len=55)
p <- P(z,c(0,1))
c.true <- coqueraux(z,c(0,1),use.fpp=TRUE)
c.false <- coqueraux(z,c(0,1),use.fpp=FALSE)
plot(1:55,abs(p-c.false))
points(1:55,abs(p-c.true),pch=16)

# }

Documentation reproduced from package elliptic, version 1.4-0, License: GPL-2

### Community examples

Looks like there are no examples yet.