half.periods

0th

Percentile

Calculates half periods in terms of e

Calculates half periods in terms of \(e\)

Keywords
math
Usage
half.periods(ignore=NULL, e=NULL, g=NULL, primitive)
Arguments
e

e

g

g

ignore

Formal argument present to ensure that e or g is named (ignored)

primitive

Boolean, with default TRUE meaning to return primitive periods and FALSE to return the direct result of Legendre's iterative scheme

Details

Parameter e=c(e1,e2,e3) are the values of the Weierstrass \(\wp\) function at the half periods: $$e_1=\wp(\omega_1)\qquad e_2=\wp(\omega_2)\qquad e_3= \wp(\omega_3)$$ where $$\omega_1+\omega_2+\omega_3=0.$$

Also, \(e\) is given by the roots of the cubic equation \(x^3-g_2x-g_3=0\), but the problem is finding which root corresponds to which of the three elements of \(e\).

Value

Returns a pair of primitive half periods

Note

Function parameters() uses function half.periods() internally, so do not use parameters() to determine e.

References

M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions. New York, Dover.

Aliases
  • half.periods
Examples
# NOT RUN {
half.periods(g=c(8,4))                ## Example 6, p665, LHS

u <- half.periods(g=c(-10,2))
massage(c(u[1]-u[2] , u[1]+u[2]))     ## Example 6, p665, RHS

half.periods(g=c(10,2))               ## Example 7, p665, LHS

u <- half.periods(g=c(7,6))
massage(c(u[1],2*u[2]+u[1]))          ## Example 7, p665, RHS


half.periods(g=c(1,1i, 1.1+1.4i))
half.periods(e=c(1,1i, 2, 1.1+1.4i))


g.fun(half.periods(g=c(8,4)))         ##  should be c(8,4)


# }
Documentation reproduced from package elliptic, version 1.4-0, License: GPL-2

Community examples

Looks like there are no examples yet.