Learn R Programming

empirical (version 0.2.0)

multivariate: Nonparametric Multivariate Probability Distributions

Description

Empirical multivariate probability density functions and empirical multivariate cumulative distribution functions. Refer to the vignette for better examples.

Usage

epdfmv (x,
    restack.pdf=sbcpdf, restack.cdf=sbccdf,
    rsp=0.5, bw, bind=TRUE, w=NA)
ecdfmv (x,
    restack.pdf=sbcpdf, restack.cdf=sbccdf,
    rsp=0.5, bw, bind=TRUE, w=NA)

Arguments

x

A vector of data points.

restack.pdf

A PDF used for restacking. ECDFs ignore this.

restack.cdf

A CDF used for restacking. EPDFs only use this if plotting bivariate models with all=TRUE.

rsp

A restacking parameter. Refer to the vignette.

bw

A bandwidth parameter. Refer to the vignette.

bind

If true, add an extra two data points.

w

A vector of weights.

Value

These functions return functions.

See Also

epdfuv, ecdfuv, ecdfuv.inverse, epdfc, ecdfc, ecdfc.inverse, epdfmv.f, ecdfmv.f

Examples

Run this code
# NOT RUN {
#construct an empirical multivariate probability density function
#and then evaluate it
data (trees)
attach (trees)
epdfmv.f = epdfmv (cbind (Height, Volume) )
epdfmv.f (c (80, 30) )
# }

Run the code above in your browser using DataLab