Learn R Programming

epoc (version 0.2.6-1.1)

epoc.validation: epoc.validation

Description

Model validation using random split or cross-validation

Usage

epoc.validation(type=c('pred','concordance'),repl,Y,U,lambdas=NULL,
   method='G',thr=1e-10,trace=0,...)

Arguments

type

'pred' for 10-fold CV of prediction error. 'concordance' for random split network concordance using Kendall \(W\).

repl

The number of replicates

Y

mRNA, samples x genes

U

CNA, samples x genes

lambdas

series of relative \(\lambda\)s or default=NULL which means let EPoC choose

method

'G' means EPoC G and 'A' means EPoC A.

thr

Threshold for convergence to the LASSO solver

trace

Debug information

...

Extra parameters passed through to the EPoC solver

Value

A list of class plot.EPoC.validation.pred or plot.EPoC.validation.W respectively.

Details

In the case of 'pred' assess CV prediction error using 10-fold cross-validation with repl replicates. In the case of 'concordance' assess network concordance using random split and Kendall W with repl replicates.

References

Rebecka J<U+00F6>rnsten, Tobias Abenius, Teresia Kling, Linn<U+00E9>a Schmidt, Erik Johansson, Torbj<U+00F6>rn Nordling, Bodil Nordlander, Chris Sander, Peter Gennemark, Keiko Funa, Bj<U+00F6>rn Nilsson, Linda Lindahl, Sven Nelander. (2011) Network modeling of the transcriptional effects of copy number aberrations in glioblastoma. Molecular Systems Biology 7 (to appear)

See Also

epoc, plot.EPoC.validation