Learn R Programming

⚠️There's a newer version (0.5.1) of this package.Take me there.

Quick start

Welcome to the exprso GitHub page! Let's get started.

library(devtools)
devtools::install_github("tpq/exprso")
library(exprso)

Importing data

To import data, we use the exprso function. This function has two arguments.

data(iris)
array <- exprso(iris[1:80, 1:4], iris[1:80, 5])
## [1] "Preparing data for binary classification."

Pre-processing data

Functions with a mod prefix pre-process the data.

array <- modTransform(array)
array <- modNormalize(array, c(1, 2))

Split data

Functions with a split prefix split the data into training and test sets.

arrays <- splitSample(array, percent.include = 67)
array.train <- arrays$array.train
array.test <- arrays$array.valid

Select features

Functions with a fs prefix select features.

array.train <- fsStats(array.train, top = 0, how = "t.test")

Build models

Functions with a build prefix build models.

mach <- buildSVM(array.train,
                 top = 50,
                 kernel = "linear",
                 cost = 1)
## Setting probability to TRUE (forced behavior, cannot override)...
## Setting cross to 0 (forced behavior, cannot override)...
pred <- predict(mach, array.train)
## Individual classifier performance:
## Arguments not provided in an ROCR AUC format. Calculating accuracy outside of ROCR...
## Classification confusion table:
##          actual
## predicted Control Case
##   Control      29    0
##   Case          0   25
##   acc sens spec
## 1   1    1    1
pred <- predict(mach, array.test)
## Individual classifier performance:
## Arguments not provided in an ROCR AUC format. Calculating accuracy outside of ROCR...
## Classification confusion table:
##          actual
## predicted Control Case
##   Control      21    0
##   Case          0    5
##   acc sens spec
## 1   1    1    1
calcStats(pred)

Deploy pipelines

Functions with a pl prefix deploy high-throughput learning pipelines.

pl <- plGrid(array.train,
             array.test,
             how = "buildSVM",
             top = c(2, 4),
             kernel = "linear",
             cost = 10^(-3:3),
             fold = NULL)
pl
## Accuracy summary (complete summary stored in @summary slot):
## 
##      build top kernel  cost train.acc train.sens train.spec train.auc
## 1 buildSVM   2 linear 0.001  0.537037          0          1         0
## 2 buildSVM   4 linear 0.001  0.537037          0          1         0
## 3 buildSVM   2 linear 0.010  1.000000          1          1         1
## 4 buildSVM   4 linear 0.010  1.000000          1          1         1
##   valid.acc valid.sens valid.spec valid.auc
## 1 0.8076923          0          1         0
## 2 0.8076923          0          1         0
## 3 1.0000000          1          1         1
## 4 1.0000000          1          1         1
## ...
##       build top kernel cost train.acc train.sens train.spec train.auc
## 11 buildSVM   2 linear  100         1          1          1         1
## 12 buildSVM   4 linear  100         1          1          1         1
## 13 buildSVM   2 linear 1000         1          1          1         1
## 14 buildSVM   4 linear 1000         1          1          1         1
##    valid.acc valid.sens valid.spec valid.auc
## 11         1          1          1         1
## 12         1          1          1         1
## 13         1          1          1         1
## 14         1          1          1         1
## 
## Machine summary (all machines stored in @machs slot):
## 
## ##Number of classes: 2 
## @preFilter summary: 4 2 
## @reductionModel summary: logical logical 
## @mach class: svm.formula svm 
## ...
## ##Number of classes: 2 
## @preFilter summary: 4 4 
## @reductionModel summary: logical logical 
## @mach class: svm.formula svm

Read the exprso vignettes for more details.

Copy Link

Version

Install

install.packages('exprso')

Monthly Downloads

21

Version

0.2.0

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Thomas Quinn

Last Published

November 18th, 2017

Functions in exprso (0.2.0)

ExprsEnsemble-class

An S4 class to store multiple classification models
ExprsArray-class

An S4 class to store feature and annotation data
ExprsMachine-class

An S4 class to store the classification model
ExprsCont-class

An S4 class to store feature and annotation data
ExprsModule-class

An S4 class to store the classification model
ExprsPipeline-class

An S4 class to store models built during high-throughput learning
ExprsMulti-class

An S4 class to store feature and annotation data
ExprsBinary-class

An S4 class to store feature and annotation data
ExprsPredict-class

An S4 class to store class predictions
GSE2eSet

Convert GSE to eSet
ExprsModel-class

An S4 class to store the classification model
array

Sample ExprsBinary Data
buildEnsemble

Build Ensemble
compare

Compare ExprsArray Objects
buildLDA

Build Linear Discriminant Analysis Model
conjoin

Combine exprso Objects
buildNB

Build Naive Bayes Model
build.

Workhorse for build Methods
buildRF

Build Random Forest Model
fs.

Workhorse for fs Methods
build

Build Models
fs

Select Features
calcNested

Calculate plNested Performance
fsMrmre

Select Features by mRMR
calcStats

Calculate Classifier Performance
fsNULL

Null Feature Selection
fsStats

Select Features by Statistical Testing
buildANN

Build Artificial Neural Network Model
getArgs

Build an args List
buildDNN

Build Deep Neural Network Model
pipeUnboot

Rename "boot" Column
buildSVM

Build Support Vector Machine Model
pl

Deploy Pipeline
ctrlSplitSet

Manage split Arguments
calcMonteCarlo

Calculate plMonteCarlo Performance
defaultArg

Set an args List Element to Default Value
doMulti

Perform "1 vs. all" Task
fsANOVA

Select Features by ANOVA
fsEbayes

Select Features by Moderated t-test
exprso-predict

Predict Class Labels
modFilter

Hard Filter Data
modHistory

Duplicate Feature Selection History
fsPropd

Select Features by Differential Proportionality Analysis
modTransform

Log Transform Data
fsSample

Select Features by Random Sampling
packageCheck

Package Check
plGridMulti

Perform High-Throughput Classification
ctrlFeatureSelect

Manage fs Arguments
arrayExprs

Import Data as ExprsArray
ctrlGridSearch

Manage plGrid Arguments
arrayMulti

Sample ExprsMulti Data
fsPathClassRFE

Select Features by Recursive Feature Elimination
check.ctrlGS

Check ctrlGS Arguments
plMonteCarlo

Monte Carlo Cross-Validation
validationSet

Extract Validation Set
classCheck

Class Check
getFeatures

Retrieve Feature Set
exprso

The exprso Package
makeGridFromArgs

Build Argument Grid
forceArg

Force an args List Element to Value
plCV

Perform Simple Cross-Validation
fsEdger

Selects Features by Exact Test
plGrid

Perform High-Throughput Classification
fsInclude

Select Features by Explicit Reference
mod

Process Data
splitStratify

Split by Stratified Sampling
modSwap

Swap Case Subjects
fsPrcomp

Reduce Dimensions by PCA
modTMM

Normalize Data
modNormalize

Normalize Data
split

Split Data
modSubset

Tidy Subset Wrapper
splitSample

Split by Random Sampling
trainingSet

Extract Training Set
modCluster

Cluster Subjects
pipeFilter

Filter ExprsPipeline Object
plNested

Nested Cross-Validation
reRank

Serialize "1 vs. all" Feature Selection
pipe

Process Pipelines