#Read in the ANT data (see ?ANT).
data(ANT)
#Show summaries of the ANT data.
head(ANT)
str(ANT)
summary(ANT)
#Compute some useful statistics per cell.
cell_stats = ddply(
.data = ANT
, .variables = .( sid , group , cue , flanker )
, .fun <- function(x){
#Compute error rate as percent.
error_rate = (1-mean(x$acc))*100
#Compute mean RT (only accurate trials).
mean_rt = mean(x$rt[x$acc==1])
#Compute SD RT (only accurate trials).
sd_rt = sd(x$rt[x$acc==1])
return(c(error_rate=error_rate,mean_rt=mean_rt,sd_rt=sd_rt))
}
)
#Compute the grand mean RT per Ss.
gmrt = ddply(
.data = cell_stats
, .variables = .( sid , group )
, .fun <- function(x){
y = mean(x$mean_rt)
return(c(y=y))
}
)
#Run a purely between-Ss ANOVA on the mean_rt data.
# (Completes after ~30s on a 2.4GHz processor).
mean_rt_perm = ezPerm(
data = gmrt
, dv = .(y)
, sid = .(sid)
, between = .(group)
, perms = 1e3
)
#Show the Permutation test.
print(mean_rt_perm)
Run the code above in your browser using DataLab