Learn R Programming

fRegression

Rmetrics - Modelling Extreme Events in Finance

The fRegression package is a collection of functions for linear and non-linear regression modelling. It implements a wrapper for several regression models available in the base and contributed packages of R.

An example

The following code simulates some regression data and fits various models to these data.

library(fRegression)
# Simulate data: the response is linearly related to 3 explanatory variables 
x <- regSim(model = "LM3", n = 100)
  
# Linear modelling       
regFit(Y ~ X1 + X2 + X3, data = x, use = "lm") 
#> 
#> Title:
#>  Linear Regression Modeling 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#> (Intercept)           X1           X2           X3  
#>     0.01578      0.73967      0.25128     -0.50611

# Robust linear modelling    
regFit(Y ~ X1 + X2 + X3, data = x, use = "rlm") 
#> 
#> Title:
#>  Robust Linear Regression Modeling 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#> (Intercept)           X1           X2           X3  
#>     0.01968      0.74264      0.24736     -0.50123

# Generalised additive modelling       
regFit(Y ~ X1 + X2 + X3, data = x, use = "gam")  
#> 
#> Title:
#>  Generalized Additive Modeling 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#> (Intercept)           X1           X2           X3  
#>     0.01578      0.73967      0.25128     -0.50611

# Projection pursuit modelling
regFit(Y ~ X1 + X2 + X3, data = x, use = "ppr") 
#> 
#> Title:
#>  Projection Pursuit Regression 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#> -- Projection Direction Vectors --
#>        term 1     term 2
#> X1  0.7950116 -0.4422500
#> X2  0.2733278 -0.4863312
#> X3 -0.5415242 -0.7535894
#> -- Coefficients of Ridge Terms --
#>    term 1    term 2 
#> 0.9163087 0.0439332

# Feed-forward neural network modelling   
regFit(Y ~ X1 + X2 + X3, data = x, use = "nnet") 
#> 
#> Title:
#>  Feedforward Neural Network Modeling 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#>    a 3-2-1 network with 11 weights
#>    options were - linear output units 
#>  [1]  3.3664690  0.5597762  0.2646774 -0.5300914  0.8276914 -0.4493467
#>  [7] -0.1400424  0.2787105 -0.5420174  5.4429808 -6.7838054

# Polychotonous Multivariate Adaptive Regression Splines
regFit(Y ~ X1 + X2 + X3, data = x, use = "polymars")
#>          1          2          3          4          5          6 
#>  0.9145273  1.1607611  1.0482997 -0.5673597 -0.4692621 -1.3336450 
#>           X1          X2          X3
#> 1  1.8197351 -0.39077723  0.24075985
#> 2  1.3704395  0.39665330 -0.02049151
#> 3  1.1963182  0.78156956  0.29685497
#> 4 -0.4068792 -0.01912605  0.55061347
#> 5 -0.6109788 -1.94431293 -0.71396821
#> 6 -1.5089120 -0.24550669  0.38003407
#> 
#> Title:
#>  Polytochomous MARS Modeling 
#> 
#> Formula:
#>  Y ~ X1 + X2 + X3
#> 
#> Family:
#>  gaussian identity 
#> 
#> Model Parameters:
#>   pred1 knot1 pred2 knot2       coefs          SE
#> 1     0    NA     0    NA  0.01577838 0.009803798
#> 2     1    NA     0    NA  0.73967249 0.009930477
#> 3     3    NA     0    NA -0.50611270 0.010729997
#> 4     2    NA     0    NA  0.25127670 0.010419817

Installation

To get the current released version from CRAN:

install.packages("fRegression")

Copy Link

Version

Install

install.packages('fRegression')

Monthly Downloads

394

Version

4021.83

License

GPL (>= 2)

Maintainer

Paul Northrop

Last Published

August 11th, 2022

Functions in fRegression (4021.83)

residuals-methods

Extract Regression Model Residuals
fitted-methods

Extract Regression Model Fitted Values
fRegression-package

Regression Modelling Package
show-methods

Regression Modelling Show Methods
fREG-class

Class "fREG"
plot-methods

Regression Model Plot Methods
predict-methods

Regression Models Prediction Function
coef-methods

REG coefficients Methods
summary-methods

Regression Summary Methods
RegressionTestsInterface

Regression Tests
regFit

Regression Modelling
terms-methods

Regression Model Plot Methods
formula-methods

Extract Regression Model formula
vcov-methods

Extract Regression Model vcov
regSim

Regression Model Simulation
termPlot

Regression Model Plot Methods