## bg | dw -
# Generate a Stationary and an AR(1) Series:
x = rep(c(1, -1), 50)
y1 = 1 + x + rnorm(100)
# Perform Breusch-Godfrey Test for 1st order serial correlation:
lmTest(y1 ~ x, "bg")
# ... or for fourth order serial correlation:
lmTest(y1 ~ x, "bg", order = 4)
# Compare with Durbin-Watson Test Results:
lmTest(y1 ~ x, "dw")
y2 = filter(y1, 0.5, method = "recursive")
lmTest(y2 ~ x, "bg")
## bp -
# Generate a Regressor:
x = rep(c(-1, 1), 50)
# Generate heteroskedastic and homoskedastic Disturbances
err1 = rnorm(100, sd = rep(c(1, 2), 50))
err2 = rnorm(100)
# Generate a Linear Relationship:
y1 = 1 + x + err1
y2 = 1 + x + err2
# Perform Breusch-Pagan Test
bp = lmTest(y1 ~ x, "bp")
bp
# Calculate Critical Value for 0.05 Level
qchisq(0.95, bp$parameter)
lmTest(y2 ~ x, "bp")
## dw -
# Generate two AR(1) Error Terms
# with parameter rho = 0 (white noise)
# and rho = 0.9 respectively
err1 = rnorm(100)
# Generate Regressor and Dependent Variable
x = rep(c(-1,1), 50)
y1 = 1 + x + err1
# Perform Durbin-Watson Test:
lmTest(y1 ~ x, "dw")
err2 = filter(err1, 0.9, method = "recursive")
y2 = 1 + x + err2
lmTest(y2 ~ x, "dw")
## gq -
# Generate a Regressor:
x = rep(c(-1, 1), 50)
# Generate Heteroskedastic and Homoskedastic Disturbances:
err1 = c(rnorm(50, sd = 1), rnorm(50, sd = 2))
err2 = rnorm(100)
# Generate a Linear Relationship:
y1 = 1 + x + err1
y2 = 1 + x + err2
# Perform Goldfeld-Quandt Test:
lmTest(y1 ~ x, "gq")
lmTest(y2 ~ x, "gq")
## harv -
# Generate a Regressor and Dependent Variable:
x = 1:50
y1 = 1 + x + rnorm(50)
y2 = y1 + 0.3*x^2
# Perform Harvey-Collier Test:
harv = lmTest(y1 ~ x, "harv")
harv
# Calculate Critical Value vor 0.05 level:
qt(0.95, harv$parameter)
lmTest(y2 ~ x, "harv")
## hmc -
# Generate a Regressor:
x = rep(c(-1, 1), 50)
# Generate Heteroskedastic and Homoskedastic Disturbances:
err1 = c(rnorm(50, sd = 1), rnorm(50, sd = 2))
err2 = rnorm(100)
# Generate a Linear Relationship:
y1 = 1 + x + err1
y2 = 1 + x + err2
# Perform Harrison-McCabe Test:
lmTest(y1 ~ x, "hmc")
lmTest(y2 ~ x, "hmc")
## rain -
# Generate Series:
x = c(1:30)
y = x^2 + rnorm(30, 0, 2)
# Perform rainbow Test
rain = lmTest(y ~ x, "rain")
rain
# Compute Critical Value:
qf(0.95, rain$parameter[1], rain$parameter[2])
## reset -
# Generate Series:
x = c(1:30)
y1 = 1 + x + x^2 + rnorm(30)
y2 = 1 + x + rnorm(30)
# Perform RESET Test:
lmTest(y1 ~ x , "reset", power = 2, type = "regressor")
lmTest(y2 ~ x , "reset", power = 2, type = "regressor")
Run the code above in your browser using DataLab