#---------------
# TEST
#---------------
dat <- makeFabiaDataBlocks(n = 100,l= 50,p = 3,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
resEx <- fabiap(X,3,0.1,50)
#-----------------
# DEMO1: Toy Data
#-----------------
n = 1000
l= 100
p = 10
dat <- makeFabiaDataBlocks(n = n,l= l,p = p,f1 = 5,f2 = 5,
of1 = 5,of2 = 10,sd_noise = 3.0,sd_z_noise = 0.2,mean_z = 2.0,
sd_z = 1.0,sd_l_noise = 0.2,mean_l = 3.0,sd_l = 1.0)
X <- dat[[1]]
Y <- dat[[2]]
ZC <- dat[[3]]
LC <- dat[[4]]
gclab <- rep.int(0,l)
gllab <- rep.int(0,n)
clab <- as.character(1:l)
llab <- as.character(1:n)
for (i in 1:p){
for (j in ZC[i]){
clab[j] <- paste(as.character(i),"_",clab[j],sep="")
}
for (j in LC[i]){
llab[j] <- paste(as.character(i),"_",llab[j],sep="")
}
gclab[unlist(ZC[i])] <- gclab[unlist(ZC[i])] + p^i
gllab[unlist(LC[i])] <- gllab[unlist(LC[i])] + p^i
}
groups <- gclab
#### FABIAP
resToy3 <- fabiap(X,13,0.1,400)
extractPlot(resToy3,ti="FABIAP",Y=Y)
raToy3 <- extractBic(resToy3)
if ((raToy3$bic[[1]][1]>1) && (raToy3$bic[[1]][2])>1) {
plotBicluster(raToy3,1)
}
if ((raToy3$bic[[2]][1]>1) && (raToy3$bic[[2]][2])>1) {
plotBicluster(raToy3,2)
}
if ((raToy3$bic[[3]][1]>1) && (raToy3$bic[[3]][2])>1) {
plotBicluster(raToy3,3)
}
if ((raToy3$bic[[4]][1]>1) && (raToy3$bic[[4]][2])>1) {
plotBicluster(raToy3,4)
}
colnames(X(resToy3)) <- clab
rownames(X(resToy3)) <- llab
plot(resToy3,dim=c(1,2),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(1,3),label.tol=0.1,col.group = groups,lab.size=0.6)
plot(resToy3,dim=c(2,3),label.tol=0.1,col.group = groups,lab.size=0.6)
#------------------------------------------
# DEMO2: Laura van't Veer's gene expression
# data set for breast cancer
#------------------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Breast_A)
X <- as.matrix(XBreast)
resBreast3 <- fabiap(X,5,0.1,400)
extractPlot(resBreast3,ti="FABIAP Breast cancer(Veer)")
raBreast3 <- extractBic(resBreast3)
if ((raBreast3$bic[[1]][1]>1) && (raBreast3$bic[[1]][2])>1) {
plotBicluster(raBreast3,1)
}
if ((raBreast3$bic[[2]][1]>1) && (raBreast3$bic[[2]][2])>1) {
plotBicluster(raBreast3,2)
}
if ((raBreast3$bic[[3]][1]>1) && (raBreast3$bic[[3]][2])>1) {
plotBicluster(raBreast3,3)
}
if ((raBreast3$bic[[4]][1]>1) && (raBreast3$bic[[4]][2])>1) {
plotBicluster(raBreast3,4)
}
plot(resBreast3,dim=c(1,2),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(1,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,3),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(2,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(3,4),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(3,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
plot(resBreast3,dim=c(4,5),label.tol=0.03,col.group=CBreast,lab.size=0.6)
}
#-----------------------------------
# DEMO3: Su's multiple tissue types
# gene expression data set
#-----------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(Multi_A)
X <- as.matrix(XMulti)
resMulti3 <- fabiap(X,5,0.1,300)
extractPlot(resMulti3,ti="FABIAP Multiple tissues(Su)")
raMulti3 <- extractBic(resMulti3)
if ((raMulti3$bic[[1]][1]>1) && (raMulti3$bic[[1]][2])>1) {
plotBicluster(raMulti3,1)
}
if ((raMulti3$bic[[2]][1]>1) && (raMulti3$bic[[2]][2])>1) {
plotBicluster(raMulti3,2)
}
if ((raMulti3$bic[[3]][1]>1) && (raMulti3$bic[[3]][2])>1) {
plotBicluster(raMulti3,3)
}
if ((raMulti3$bic[[4]][1]>1) && (raMulti3$bic[[4]][2])>1) {
plotBicluster(raMulti3,4)
}
plot(resMulti3,dim=c(1,2),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(1,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,3),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(2,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(3,4),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(3,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
plot(resMulti3,dim=c(4,5),label.tol=0.01,col.group=CMulti,lab.size=0.6)
}
#-----------------------------------------
# DEMO4: Rosenwald's diffuse large-B-cell
# lymphoma gene expression data set
#-----------------------------------------
avail <- require(fabiaData)
if (!avail) {
message("")
message("")
message("#####################################################")
message("Package 'fabiaData' is not available: please install.")
message("#####################################################")
} else {
data(DLBCL_B)
X <- as.matrix(XDLBCL)
resDLBCL3 <- fabiap(X,5,0.1,400)
extractPlot(resDLBCL3,ti="FABIAP Lymphoma(Rosenwald)")
raDLBCL3 <- extractBic(resDLBCL3)
if ((raDLBCL3$bic[[1]][1]>1) && (raDLBCL3$bic[[1]][2])>1) {
plotBicluster(raDLBCL3,1)
}
if ((raDLBCL3$bic[[2]][1]>1) && (raDLBCL3$bic[[2]][2])>1) {
plotBicluster(raDLBCL3,2)
}
if ((raDLBCL3$bic[[3]][1]>1) && (raDLBCL3$bic[[3]][2])>1) {
plotBicluster(raDLBCL3,3)
}
if ((raDLBCL3$bic[[4]][1]>1) && (raDLBCL3$bic[[4]][2])>1) {
plotBicluster(raDLBCL3,4)
}
plot(resDLBCL3,dim=c(1,2),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(1,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,3),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(2,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,4),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(3,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
plot(resDLBCL3,dim=c(4,5),label.tol=0.03,col.group=CDLBCL,lab.size=0.6)
}
Run the code above in your browser using DataLab