powered by
projFuncPos: R implementation of projFuncPos.
projFuncPos
projFuncPos(s, k1, k2)
The projection minimize the Euclidean distance to the original vector given an $l_1$-norm and an $l_2$-norm and enforcing non-negativity.
The projection is a convex quadratic problem which is solved iteratively where at each iteration at least one component is set to zero.
In the applications, instead of the $l_1$-norm a sparseness measurement is used which relates the $l_1$-norm to the $l_2$-norm:
Implementation in R.
fabia
fabias
fabiap
fabi
fabiasp
mfsc
nmfdiv
nmfeu
nmfsc
extractPlot
extractBic
plotBicluster
Factorization
projFunc
estimateMode
makeFabiaData
makeFabiaDataBlocks
makeFabiaDataPos
makeFabiaDataBlocksPos
matrixImagePlot
fabiaDemo
fabiaVersion
#--------------- # DEMO #--------------- size <- 30 sparseness <- 0.7 s <- as.vector(rnorm(size)) sp <- sqrt(1.0*size)-(sqrt(1.0*size)-1.0)*sparseness ss <- projFuncPos(s,k1=sp,k2=1) s ss
Run the code above in your browser using DataLab