Learn R Programming

fda.usc (version 0.9.4)

classif.kernel.fd: Kernel Classifier from Functional Data

Description

Fits Nonparametric Supervised Classification for Functional Data.

Usage

classif.kernel.fd(fdataobj, group, h = NULL, 
metric = metric.lp, ...)

Arguments

fdataobj
fdata class object.
group
Factor of length n.
h
Vector of smoothing parameter or bandwidth.
metric
Metric function, by default metric.lp.
...
Arguments to be passed for metric.lp o other metric function and Kernel function.

Value

  • fdataobjfdata class object.
  • groupFactor of length n.
  • group.estEstimated vector groups
  • prob.groupMatrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
  • max.probHighest probability of correct classification.
  • h.optOptimal smoothing parameter or bandwidht estimated.
  • DMatrix of distances of the optimal quantile distance hh.opt.
  • prob.classificationProbability of correct classification by group.
  • misclassificationVector of probability of misclassification by number of neighbors knn.
  • hVector of smoothing parameter or bandwidht.
  • CA call of function classif.kernel.fd.

Details

Make the group classification of a training dataset using kernel estimation: Kernel. Different types of metric funtions can be used.

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York. Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at http://www.lsp.ups-tlse.fr/staph/npfda/

See Also

See Also as predict.classif.fd

Examples

Run this code
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]

h=seq(7,19,len=10)
out=classif.kernel.fd(mlearn,glearn,h=h)
summary.classif.fd(out)
#round(out$prob.group,4)

Run the code above in your browser using DataLab