Learn R Programming

fda.usc (version 0.9.4)

fdata2pc: Principal components for functional data

Description

Compute principal components for functional data.

Usage

fdata2pc(fdataobj,norm=TRUE,ncomp=2)

Arguments

fdataobj
fdata class object.
norm
=TRUE the norm of eigenvectors (rotation) is 1.
ncomp
Number of principal comoponents.

Value

  • lambdaEigenvalues of the principal components.
  • rotationfdata class object.
  • xIs true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned
  • fdataobj.cenThe centered fdataobj object.
  • meanThe functional mean of fdataobj object.
  • lVector of index of principal comoponents.
  • CThe matched call.

References

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S. Springer-Verlag.

See Also

See Also as svd and varimax.

Examples

Run this code
n= 500;tt= seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
pc=fdata2pc(x)

Run the code above in your browser using DataLab