Learn R Programming

fda.usc (version 0.9.4)

fregre.pls: Functional PLS regression with scalar response

Description

Compute partial least squares regression (PLSR) for functional data.

Usage

fregre.pls(fdataobj,y,l=1:3,...)

Arguments

fdataobj
fdata class object.
l
Index of components to include in the model.
y
Scalar response with length n.
...
Further arguments passed to or from other methods.

Value

  • Return:
  • callThe matched call of fregre.pls function.
  • beta.estBeta coefficient estimated of class fdata.
  • coefficientsA named vector of coefficients.
  • fitted.valuesEstimated scalar response.
  • coefficentsA named vector of coefficients.
  • residualsy-fitted values.
  • dfThe residual degrees of freedom.
  • r2Coefficient of determination.
  • sr2Residual variance.
  • HHat matrix.
  • fdataobjFunctional explanatory data.
  • yScalar response.
  • lIndex of components to include in the model.
  • pls.fdataFitted object in pls.fdata function.
  • lmFitted object in lm function

Details

The partial least squares are calculated by plsr function.

References

Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149{-}158.

See Also

See Also as: fregre.pls.cv, summary.fregre.fd and predict.fregre.fd. Alternative method: fregre.pc, fregre.basis and fregre.np.

Examples

Run this code
data(tecator)
x<-tecator$absorp.fdata
y<-tecator$y$Fat
res=fregre.pls(x,y,c(1:8))
summary(res)

Run the code above in your browser using DataLab