Usage
semimetric.hshift(fdataobj1, fdataobj2, t=1:ncol(DATA1),...)
semimetric.mplsr(fdataobj1, fdataobj2, q=2, class1,...)
semimetric.pca(fdataobj1, fdataobj2, q=1,...)
semimetric.deriv(fdataobj1, fdataobj2, nderiv=1,
nknot=ifelse(floor(ncol(DATA1)/3)>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1)-nderiv-4)/2),floor(ncol(DATA1)/3)),
range.t=c(0,1),...)
semimetric.fourier(fdataobj1, fdataobj2, nderiv=0,
nbasis=ifelse(floor(ncol(DATA1)/3)>floor((ncol(DATA1)-nderiv-4)/2),
floor((ncol(DATA1) - nderiv - 4)/2), floor(ncol(DATA1)/3)),
range.t=c(0,1), period=NULL,...)
Arguments
fdataobj1
Functional data 1 or curve 1. DATA1 with dimension (n1 x m), where n1 is the number of curves and m are the points observed in each curve.
fdataobj2
Functional data 2 or curve 2. DATA1 with dimension (n2 x m), where n2 is the number of curves and m are the points observed in each curve.
q
If semimetric.pca: the retained number of principal components.
If semimetric.mplsr: the retained number of factors.
nknot
semimetric.deriv argument: number of interior knots (needed for defining the B-spline basis).
range.t
semimetric.deriv argument: vector of length 2 containing the range of the t at which the curve are evaluated (i.e. range of the discretization).
nderiv
Order of derivation, used in semimetric.deriv and semimetric.fourier
nbasis
semimetric.fourier: size of the basis.
period
semimetric.fourier:allows to select the period for the fourier expansion.
t
semimetric.hshift: vector which defines t (one can choose 1,2,...,nbt where nbt is the number of points of the discretization)
class1
semimetric.mplsr: vector containing a categorical response which corresponds to class number for units stored in DATA1.
...
Further arguments passed to or from other methods.