Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc (version 0.9.8.1)

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)

Description

This package implements functional data methods.

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

5,150

Version

0.9.8.1

License

GPL-2

Maintainer

Oviedo la Fuente

Last Published

July 3rd, 2012

Functions in fda.usc (0.9.8.1)

depth.FM

Fraiman-Muniz depth measure
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
CV.S

The cross-validation (CV) score
min.np

Smoothing of functional data using nonparametric kernel estimation
fdata.deriv

Computes the derivative of functional data object.
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
fregre.basis

Functional Regression with scalar response using basis representation.
fdata.bootstrap

Bootstrap samples of a functional statistic
Descriptive

Descriptive measures for functional data.
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
poblenou

poblenou data
Kernel

Symmetric Smoothing Kernels.
predict.fregre.lm

Predict method for functional linear model of fregre.lm fits object
S.basis

Smoothing matrix with roughness penalties by basis representation.
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
Outliers.fdata

Detecting outliers for functional dataset
fdata2fd

Converts fdata class object into fd class object
Var.y

Sampling Variance estimates
fregre.pc

Functional (Ridge) Regression with scalar response using Principal Components Analysis.
classif.glm

Classification Fitting Functional Generalized Linear Models
fdata

Converts raw data or other functional data classes into fdata class.
predict.fregre.glm

Predict method for functional linear model of fregre.glm fits object
S.np

Smoothing matrix by nonparametric methods.
rproc2fdata

Generate random process of fdata class.
cond.F

Conditional Distribution Function
fregre.pls

Functional PLS regression with scalar response
plot.fdata

Plot functional data: fdata.
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
fregre.lm

Fitting Functional Linear Models
anova.RPm

Functional ANOVA with Random Project.
fda.usc.internal

fda.usc internal functions
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
predict.fregre.gsam

Predict method for functional generalized spectral additive model of fregre.gsam fits object
FDR

False Discorvery Rate (FDR)
summary.fregre.fd

Summarizes information from fregre.fd objects.
depth.mode

Provides the depth measure (mode) for functional data
Kernel.integrate

Integrate Smoothing Kernels.
Depth

Provides the depth measure for functional data
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
phoneme

phoneme data
depth.RPD

Provides the depth measure by random projections using derivatives
dev.S

The deviance score .
predict.fregre.gkam

Predict method for functional generalized kernel additive model of fregre.gkam fits object
influence.quan

Quantile for influence measures
semimetric.basis

Proximities between functional data
aemet

aemet data
rber.gold

Gold section bootstrap sampling
anova.hetero

ANOVA for heteroscedastic data
flm.Ftest

F-test for the Functional Linear Model with scalar response
fdata.cen

Functional data centred (subtract the mean of each discretization point)
kmeans.fd

K-Means Clustering for functional data
fregre.pc.cv

Vaidation criteria for Functional Principal Component (and Ridge) Regression using selection of number of Principal Components
predict.classif

Predicts from a fitted classif object.
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
h.default

Calculation of the smoothing parameter (h) for a functional data
cond.quantile

Conditional quantile
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
metric.lp

Aproximates Lp-metric distances for functional data.
Kernel.asymmetric

Asymmetric Smoothing Kernel
cond.mode

Conditional mode
tecator

tecator data
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
GCV.S

The generalized cross-validation (GCV) score.
dis.cos.cor

Proximities between functional data
predict.fregre.plm

Predict method for semi-functional linear regression model.
semimetric.NPFDA

Proximities between functional data (semi-metrics)
fregre.plm

Semi-functional partially linear model with scalar response.
classif.gsam

Classification Fitting Functional Generalized Additive Models
classif.np

Kernel Classifier from Functional Data
fdata2pc

Principal components for functional data
fregre.pls.cv

Functional PLS regression with scalar response using selection of number of PLS components
int.simpson

Simpson integration
fregre.glm

Fitting Functional Generalized Linear Models
min.basis

Select the number of basis using GCV method.
influnce.fdata

Functional influence measures
fregre.bootstrap

Bootstrap regression
create.fdata.basis

Create Basis Set for Functional Data of fdata class
norm.fdata

Aproximates Lp-norm for functional data.
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
summary.classif

Summarizes information from kernel classification methods.
depth.RP

Provides the depth measure using random projections for functional data
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
fdata2pls

Partial least squares components for functional data.
fdata.methods

fdata S3 Group Generic Functions
predict.fregre.kgam

Predict method for functional kernel generalized additive model of fregre.kgam fits object
fregre.kgam

Fitting Functional Generalized Additive Models.
classif.kgam

Classification Fitting Functional Generalized Additive Models
summary.fregre.kgam

Summarizes information from fregre.kgam objects.