Rdocumentation
powered by
Learn R Programming
⚠️
There's a newer version (2.1.0) of this package.
Take me there.
fda.usc (version 0.9.8.1)
Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
Description
This package implements functional data methods.
Copy Link
Link to current version
Version
Version
2.1.0
2.0.2
2.0.1
2.0.0
1.5.0
1.4.0
1.2.3
1.2.2
1.2.1
1.2.0
1.1.0
1.0.5
1.0.4
1.0.3
1.0.2
1.0.1
1.0.0
0.9.8.1
0.9.7
0.9.6
0.9.5
0.9.4
0.8
Install
install.packages('fda.usc')
Monthly Downloads
5,150
Version
0.9.8.1
License
GPL-2
Homepage
http://eio.usc.es/pub/MAESFE/
Maintainer
Oviedo la Fuente
Last Published
July 3rd, 2012
Functions in fda.usc (0.9.8.1)
Search all functions
depth.FM
Fraiman-Muniz depth measure
inprod.fdata
Inner products of Functional Data Objects o class (fdata)
CV.S
The cross-validation (CV) score
min.np
Smoothing of functional data using nonparametric kernel estimation
fdata.deriv
Computes the derivative of functional data object.
fda.usc-package
Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
fregre.basis
Functional Regression with scalar response using basis representation.
fdata.bootstrap
Bootstrap samples of a functional statistic
Descriptive
Descriptive measures for functional data.
dfv.test
Delsol, Ferraty and Vieu test for no functional-scalar interaction
fregre.gsam
Fitting Functional Generalized Spectral Additive Models
poblenou
poblenou data
Kernel
Symmetric Smoothing Kernels.
predict.fregre.lm
Predict method for functional linear model of fregre.lm fits object
S.basis
Smoothing matrix with roughness penalties by basis representation.
fregre.np
Functional regression with scalar response using non-parametric kernel estimation
Outliers.fdata
Detecting outliers for functional dataset
fdata2fd
Converts fdata class object into fd class object
Var.y
Sampling Variance estimates
fregre.pc
Functional (Ridge) Regression with scalar response using Principal Components Analysis.
classif.glm
Classification Fitting Functional Generalized Linear Models
fdata
Converts raw data or other functional data classes into fdata class.
predict.fregre.glm
Predict method for functional linear model of fregre.glm fits object
S.np
Smoothing matrix by nonparametric methods.
rproc2fdata
Generate random process of fdata class.
cond.F
Conditional Distribution Function
fregre.pls
Functional PLS regression with scalar response
plot.fdata
Plot functional data: fdata.
classif.gkam
Classification Fitting Functional Generalized Kernel Additive Models
fregre.lm
Fitting Functional Linear Models
anova.RPm
Functional ANOVA with Random Project.
fda.usc.internal
fda.usc internal functions
fregre.basis.cv
Cross-validation Functional Regression with scalar response using basis representation.
predict.fregre.gsam
Predict method for functional generalized spectral additive model of fregre.gsam fits object
FDR
False Discorvery Rate (FDR)
summary.fregre.fd
Summarizes information from fregre.fd objects.
depth.mode
Provides the depth measure (mode) for functional data
Kernel.integrate
Integrate Smoothing Kernels.
Depth
Provides the depth measure for functional data
summary.fdata.comp
Correlation for functional data by Principal Component Analysis
phoneme
phoneme data
depth.RPD
Provides the depth measure by random projections using derivatives
dev.S
The deviance score .
predict.fregre.gkam
Predict method for functional generalized kernel additive model of fregre.gkam fits object
influence.quan
Quantile for influence measures
semimetric.basis
Proximities between functional data
aemet
aemet data
rber.gold
Gold section bootstrap sampling
anova.hetero
ANOVA for heteroscedastic data
flm.Ftest
F-test for the Functional Linear Model with scalar response
fdata.cen
Functional data centred (subtract the mean of each discretization point)
kmeans.fd
K-Means Clustering for functional data
fregre.pc.cv
Vaidation criteria for Functional Principal Component (and Ridge) Regression using selection of number of Principal Components
predict.classif
Predicts from a fitted classif object.
fregre.gkam
Fitting Functional Generalized Kernel Additive Models.
h.default
Calculation of the smoothing parameter (h) for a functional data
cond.quantile
Conditional quantile
flm.test
Goodness-of-fit test for the Functional Linear Model with scalar response
metric.lp
Aproximates Lp-metric distances for functional data.
Kernel.asymmetric
Asymmetric Smoothing Kernel
cond.mode
Conditional mode
tecator
tecator data
predict.fregre.fd
Predict method for functional linear model (fregre.fd class)
GCV.S
The generalized cross-validation (GCV) score.
dis.cos.cor
Proximities between functional data
predict.fregre.plm
Predict method for semi-functional linear regression model.
semimetric.NPFDA
Proximities between functional data (semi-metrics)
fregre.plm
Semi-functional partially linear model with scalar response.
classif.gsam
Classification Fitting Functional Generalized Additive Models
classif.np
Kernel Classifier from Functional Data
fdata2pc
Principal components for functional data
fregre.pls.cv
Functional PLS regression with scalar response using selection of number of PLS components
int.simpson
Simpson integration
fregre.glm
Fitting Functional Generalized Linear Models
min.basis
Select the number of basis using GCV method.
influnce.fdata
Functional influence measures
fregre.bootstrap
Bootstrap regression
create.fdata.basis
Create Basis Set for Functional Data of fdata class
norm.fdata
Aproximates Lp-norm for functional data.
summary.fregre.gkam
Summarizes information from fregre.gkam objects.
summary.classif
Summarizes information from kernel classification methods.
depth.RP
Provides the depth measure using random projections for functional data
fregre.np.cv
Cross-validation functional regression with scalar response using kernel estimation.
PCvM.statistic
PCvM statistic for the Functional Linear Model with scalar response
fdata2pls
Partial least squares components for functional data.
fdata.methods
fdata S3 Group Generic Functions
predict.fregre.kgam
Predict method for functional kernel generalized additive model of fregre.kgam fits object
fregre.kgam
Fitting Functional Generalized Additive Models.
classif.kgam
Classification Fitting Functional Generalized Additive Models
summary.fregre.kgam
Summarizes information from fregre.kgam objects.