Learn R Programming

fda.usc (version 0.9.8.1)

fdata2pls: Partial least squares components for functional data.

Description

Compute partial least squares (PLS) components for functional data.

Usage

fdata2pls(fdataobj,y,ncomp=2,...)

Arguments

fdataobj
fdata class object.
y
Scalar response with length n.
ncomp
The number of components to include in the model.
...
Further arguments passed to or from other methods.

Value

  • fdata2pls function return:
  • rotationfdata class object.
  • xIs true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned.
  • fdataobj.cenThe centered fdataobj object.
  • meanmean of fdataobj.
  • lVector of index of principal components.
  • CThe matched call.

Details

The partial least squares are calculated by NIPALS algorithm.

References

Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.

See Also

Used in: fregre.pls, fregre.pls.cv. Alternative method: fdata2pc.

Examples

Run this code
n= 500;tt= seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
pls1=fdata2pls(x,y)
norm.fdata(pls1$rotation)

Run the code above in your browser using DataLab