depth.FMfunction is based on integrated an univariate depth measure along the axis x.depth.modefunction implements the modal depth that selects the curve most densely surrounded by others as the deepest one. By default, the distance is calculated usingmetric.lpfunction.depth.RPfunction implements a depth measure based on random projections.depth.RPDfunction implements a depth measure based on random projections and using several derivatives.depth.RTfunction implements a depth measure based on random projections using a half-space Tukey method.depth.FM(fdataobj,fdataori=fdataobj,trim=0.25,xeps=0.00000001,draw=FALSE,...)
depth.mode(fdataobj,fdataori=fdataobj,trim=0.25,
metric=metric.lp,h=NULL,scale=FALSE,draw=FALSE,...)
depth.RP(fdataobj,fdataori=fdataobj,trim=0.25,nproj=50,proj=1,
xeps=0.0000001,draw=FALSE,...)
depth.RPD(fdataobj,fdataori=fdataobj,nproj=50,proj=1,deriv=c(0,1),trim=0.25,
dfunc2=depth.mode,method="fmm",draw=FALSE,...)
depth.RT(fdataobj, fdataori = fdataobj, trim = 0.25, nproj = 10,
proj = 1, xeps = 1e-07, draw = FALSE, ...)fdata class object.fdata class object.depth.mode.deriv. =0 means no derivative.fdata.deriv for more details.h>0.metric.lp.median.fdata class object with the average from the (1-trim)% deepest curves.mtrim.depth.FMmethod sorts the depths along the axis x, ie, performs a ranking of depths.depth.modefunction calculates the depth of a datum accounting the number of curves in the neighbourhood. The mode of a functional data will be the deepest curve.depth.RPfunction calculates depth using univariate depth tools through random projection method (RP).depth.RPDfunction also involves the derivatives of each curve. This function calculates the depth in two steps. It builds random projections for the funcion and their derivatives (indicated in the parameterderiv) without looking at the functional data. Then it applyes a depth function (by defaultdepth.mode) to the set of random projections created for calculate the functional depth by the Tukey method.depth.RTfunction builds random projections and calculates the functional depth by the Tukey method combining the information of all projections.Descriptive.#Ex: CanadianWeather data
tt=1:365
fdataobj<-fdata(t(CanadianWeather$dailyAv[,,1]),tt)
# Fraiman-Muniz Depth
out.FM=depth.FM(fdataobj,trim=0.1,draw=TRUE)
#Modal Depth
out.mode=depth.mode(fdataobj,trim=0.1,draw=TRUE)
out.RP=depth.RP(fdataobj,trim=0.1,draw=TRUE)
out.RT=depth.RT(fdataobj,trim=0.1,draw=TRUE)
## NOT RUN
## Double Random Projections
# out.RPD=depth.RPD(fdataobj,deriv=c(0,1),dfunc2=depth.FM,trim=0.1,draw=TRUE)
# out<-c(out.FM$mtrim,out.mode$mtrim,out.RP$mtrim,out.RPD$mtrim)
# plot(out)Run the code above in your browser using DataLab