Learn R Programming

fda.usc (version 1.1.0)

Kernel.integrate: Integrate Smoothing Kernels.

Description

Represent integrate kernels: normal, cosine, triweight, quartic and uniform.

Usage

Kernel.integrate(u,Ker=Ker.norm,a=-1)
IKer.norm(u)
IKer.cos(u)
IKer.epa(u)
IKer.tri(u)
IKer.quar(u)
IKer.unif(u)

Arguments

u
data
Ker
Type of Kernel. By default normal kernel.
a
Lower limit of integration.

Value

  • resReturns integrate kernel.

Details

Type of integrate kernel: ll{ Integrate Normal Kernel: IKer.norm Integrate Cosine Kernel: IKer.cos Integrate Epanechnikov Kernel: IKer.epa Integrate Triweight Kernel: IKer.tri Integrate Quartic Kernel: IKer.quar Integrate Uniform Kernel: IKer.unif }

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York. Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.

See Also

See Also as: Kernel and integrate.

Examples

Run this code
y=qnorm(seq(.1,.9,len=100))
d=IKer.tri(y)
e=IKer.cos(y)
e2=Kernel.integrate(u=y,Ker=Ker.cos)
e-e2
f=IKer.epa(y)
f2=Kernel.integrate(u=y,Ker=Ker.epa)
f-f2


plot(d,type="l",ylab="Integrate Kernel")
lines(e,col=2,type="l")
lines(f,col=4,type="l")

Run the code above in your browser using DataLab