outliers.thres.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.lrt(fdataobj,nb=200,smo=0.05,trim=0.10,...)
outliers.depth.trim(fdataobj,nb=200,smo=0.05,trim=0.01,
dfunc=depth.mode,...)
outliers.depth.pond(fdataobj,nb=200,smo=0.05,dfunc=depth.mode,...)
## S3 method for class 'outliers.pond':
quantile(x,dfunc=depth.mode,
nb=200,smo=0.05,ns=0.01,\dots)
## S3 method for class 'outliers.trim':
quantile(x,dfunc=depth.mode,trim=0.1,
nb=200,smo=0.05,ns=0.01,\dots)
fdata
class object.depth.mode
.outliers.lrt
). The threshold for outlier detection is given by the
outliers.thres.lrt
.
Outlier detection in functional data by depth measures:
i.-outliers.depth.pond
function weights the data according to depth.
ii.-outliers.depth.trim
function uses trimmed data.
quantile.outliers.pond and quantile.outliers.trim functions provides the quantiles of the bootstrap samples for functional outlier detection by data ponderation amd trimmed data respectively. Bootstrap smoothing function (fdata.bootstrap
with nb
resamples) is applied to these weighted or trimmed data. If smo=0
smoothed bootstrap is not performed. The function returns a vector of size 1
xnb
with quantiles of the bootstrap samples.fdata.bootstrap
, Depth
.data(aemet)
nb=200
# NOT RUN
#out.trim<-outliers.depth.trim(aemet$temp,dfunc=depth.FM,nb=nb)
#plot(aemet$temp,col=1,lty=1)
#lines(aemet$temp[out.trim[[1]]],col=2)
Run the code above in your browser using DataLab