Learn R Programming

fda.usc (version 1.2.3)

classif.depth: Classifier from Functional Data

Description

Classification of functional data using maximum depth.

Usage

classif.depth(group,fdataobj,newfdataobj,depth="RP",
par.depth=list(),CV="none")

Arguments

group
Factor of length n
fdataobj
fdata, matrix or data.frame class object of train data.
newfdataobj
fdata, matrix or data.frame class object of test data.
depth
Type of depth function from functional data:
  • FM: Fraiman and Muniz depth.
  • mode: modal depth.
  • RT: random Tukey depth.
  • RP: random project depth.
  • RPD
par.depth
List of parameters for depth.
CV
=``none'' group.est=group.pred, =TRUE group.est is estimated by cross-validation, =FALSE group.est is estimated.

Value

  • group.estVector of classes of train sample data.
  • group.predVector of classes of test sample data.
  • prob.classificationProbability of correct classification by group.
  • max.probHighest probability of correct classification.
  • fdataobjfdata class object.
  • groupFactor of length n.

References

Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481{-}496.

Examples

Run this code
data(phoneme)
mlearn<-phoneme[["learn"]]
mtest<-phoneme[["test"]]
glearn<-phoneme[["classlearn"]]
gtest<-phoneme[["classtest"]]

a1<-classif.depth(glearn,mlearn,depth="RP")
table(a1$group.est,glearn)
a2<-classif.depth(glearn,mlearn,depth="RP",CV=TRUE)
a3<-classif.depth(glearn,mlearn,depth="RP",CV=FALSE)
a4<-classif.depth(glearn,mlearn,mtest,"RP")
a5<-classif.depth(glearn,mlearn,mtest,"RP",CV=TRUE)     
table(a5$group.est,glearn)
a6<-classif.depth(glearn,mlearn,mtest,"RP",CV=FALSE)
table(a6$group.est,glearn)

Run the code above in your browser using DataLab