50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc: Functional Data Analysis and Utilities for Statistical Computing

Package overview

fda.usc package carries out exploratory and descriptive analysis of functional data exploring its most important features such as depth measurements or functional outliers detection, among others. It also helps to explain and model the relationship between a dependent variable and independent (regression models) and make predictions. Methods for supervised or unsupervised classification of a set of functional data regarding a feature of the data are also included. It can perform functional ANOVA, hypothesis testing, functional response models and many others.

Installation

You can install the current fda.usc version from CRAN with:

install.packages("fda.usc")

or the latest patched version from Github with:

library(devtools)
devtools::install_github("moviedo5/fda.usc")

Issues & Feature Requests

For issues, bugs, feature requests etc. please use the Github Issues. Input is always welcome.

Documentation

A hands on introduction to can be found in the reference vignette.

Details on specific functions are in the reference manual.

Cheatsheet fda.usc reference card.

References

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4):1-28. http://www.jstatsoft.org/v51/i04/

-->

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

2,819

Version

2.0.1

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Manuel Oviedo de la Fuente

Last Published

December 16th, 2019

Functions in fda.usc (2.0.1)

CV.S

The cross-validation (CV) score
Kernel

Symmetric Smoothing Kernels.
Kernel.asymmetric

Asymmetric Smoothing Kernel
FDR

False Discorvery Rate (FDR)
Kernel.integrate

Integrate Smoothing Kernels.
Descriptive

Descriptive measures for functional data.
GCCV.S

The generalized correlated cross-validation (GCCV) score.
GCV.S

The generalized correlated cross-validation (GCCV) score
LMDC.select

Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)
MCO

Mithochondiral calcium overload (MCO) data set
S.np

Smoothing matrix by nonparametric methods
Var.y

Sampling Variance estimates
S.basis

Smoothing matrix with roughness penalties by basis representation.
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
classif.DD

DD-Classifier Based on DD-plot
classif.ML

Functional classification using ML algotithms
classif.kfold

Functional Classification usign k-fold CV
classif.np

Kernel Classifier from Functional Data
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
aemet

aemet data
accuracy

Performance measures for regression and classification models
classif.depth

Classifier from Functional Data
P.penalty

Penalty matrix for higher order differences
Outliers.fdata

outliers for functional dataset
create.fdata.basis

Create Basis Set for Functional Data of fdata class
cond.quantile

Conditional quantile
classif.glm

Classification Fitting Functional Generalized Linear Models
fanova.hetero

ANOVA for heteroscedastic data
classif.gsam

Classification Fitting Functional Generalized Additive Models
fanova.onefactor

One--way anova model for functional data
dev.S

The deviance score
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
depth.mdata

Provides the depth measure for multivariate data
dis.cos.cor

Proximities between functional data
depth.mfdata

Provides the depth measure for a list of p--functional data objects
fanova.RPm

Functional ANOVA with Random Project.
cond.F

Conditional Distribution Function
fdata2pc

Principal components for functional data
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
fdata2pls

Partial least squares components for functional data.
fda.usc.internal

fda.usc internal functions
fdata.cen

Functional data centred (subtract the mean of each discretization point)
cond.mode

Conditional mode
fregre.basis.fr

Functional Regression with functional response using basis representation.
fregre.bootstrap

Bootstrap regression
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
fregre.glm

Fitting Functional Generalized Linear Models
fregre.lm

Fitting Functional Linear Models
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
fdata.deriv

Computes the derivative of functional data object.
h.default

Calculation of the smoothing parameter (h) for a functional data
influence.fregre.fd

Functional influence measures
ldata

ldata class definition and utilities
fregre.plm

Semi-functional partially linear model with scalar response.
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components
fdata.methods

fdata S3 Group Generic Functions
fregre.gsam.vs

Variable Selection using Functional Additive Models
fdata2fd

Converts fdata class object into fd class object
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
fregre.gls

Fit Functional Linear Model Using Generalized Least Squares
fregre.igls

Fit of Functional Generalized Least Squares Model Iteratively
fregre.basis

Functional Regression with scalar response using basis representation.
phoneme

phoneme data
plot.fdata

Plot functional data: fdata class object
metric.dist

Distance Matrix Computation
metric.DTW

DTW: Dynamic time warping
metric.hausdorff

Compute the Hausdorff distances between two curves.
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
metric.kl

Kullback--Leibler distance
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
rp.flm.test

Goodness-of fit test for the functional linear model using random projections
predict.fregre.gkam

Predict method for functional regression model
rp.flm.statistic

Statistics for testing the functional linear model using random projections
r.ou

Ornstein-Uhlenbeck process
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
fregre.pc

Functional Regression with scalar response using Principal Components Analysis
influence_quan

Quantile for influence measures
weights4class

Weighting tools
dcor.xy

Distance Correlation Statistic and t-Test
metric.ldata

Distance Matrix Computation for ldata and mfdata class object
depth.fdata

Computation of depth measures for functional data
norm.fdata

Approximates Lp-norm for functional data.
optim.np

Smoothing of functional data using nonparametric kernel estimation
fdata.bootstrap

Bootstrap samples of a functional statistic
rcombfdata

Utils for generate functional data
flm.Ftest

F-test for the Functional Linear Model with scalar response
fdata

Converts raw data or other functional data classes into fdata class.
optim.basis

Select the number of basis using GCV method.
rdir.pc

Data-driven sampling of random directions guided by sample of functional data
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
summary.fregre.fd

Summarizes information from fregre.fd objects.
predict.classif

Predicts from a fitted classif object.
subset.fdata

Subsetting
summary.classif

Summarizes information from kernel classification methods.
tecator

tecator data
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
fregre.pls

Functional Penalized PLS regression with scalar response
int.simpson

Simpson integration
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components
kmeans.center.ini

K-Means Clustering for functional data
predict.fregre.gls

Predictions from a functional gls object
rwild

Wild bootstrap residuals
na.omit.fdata

A wrapper for the na.omit and na.fail function for fdata object
rproc2fdata

Simulate several random processes.
predict.fregre.fr

Predict method for functional response model
ops.fda.usc

ops.fda.usc Options Settings
metric.lp

Approximates Lp-metric distances for functional data.
predict.classif.DD

Predicts from a fitted classif.DD object.
poblenou

poblenou data
semimetric.NPFDA

Proximities between functional data (semi-metrics)
semimetric.basis

Proximities between functional data