h.default

Calculation of the smoothing parameter (h) for a functional data

Calculation of the smoothing parameter (h) for a functional data using nonparametric kernel estimation.

Keywords
nonparametric
Usage
h.default(
  fdataobj,
  prob = c(0.025, 0.25),
  len = 51,
  metric = metric.lp,
  type.S = "S.NW",
  ...
)
Arguments
fdataobj

fdata class object.

prob

Range of probabilities for the quantiles of the distance matrix.

len

Vector length of smoothing parameter h to return.

metric

If is a function: name of the function to calculate the distance matrix between the curves, by default metric.lp. If is a matrix: distance matrix between the curves. kernel.

type.S

Type of smothing matrix S. Possible values are: Nadaraya-Watson estimator "S.NW" and K nearest neighbors estimator "S.KNN"

Arguments to be passed for metric argument.

Value

Returns the vector of smoothing parameter or bandwidth h.

See Also

See Also as metric.lp, Kernel and S.NW. Function used in fregre.np and fregre.np.cv function.

Aliases
  • h.default
Examples
# NOT RUN {
data(aemet)
h1<-h.default(aemet$temp,prob=c(0.025, 0.25),len=2)
mdist<-metric.lp(aemet$temp)
h2<-h.default(aemet$temp,len=2,metric=mdist)
h3<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=2)
h4<-h.default(aemet$temp,len=2,metric=semimetric.pca,q=4)
h5<-h.default(aemet$temp,prob=c(.2),type.S="S.KNN")
h1;h2;h3;h4;h5
# }
Documentation reproduced from package fda.usc, version 2.0.1, License: GPL-2

Community examples

Looks like there are no examples yet.