Learn R Programming

⚠️There's a newer version (2.1.0) of this package.Take me there.

fda.usc: Functional Data Analysis and Utilities for Statistical Computing

Package overview

fda.usc package carries out exploratory and descriptive analysis of functional data exploring its most important features such as depth measurements or functional outliers detection, among others. It also helps to explain and model the relationship between a dependent variable and independent (regression models) and make predictions. Methods for supervised or unsupervised classification of a set of functional data regarding a feature of the data are also included. It can perform functional ANOVA, hypothesis testing, functional response models and many others.

Installation

You can install the current fda.usc version from CRAN with:

install.packages("fda.usc")

or the latest patched version from Github with:

library(devtools)
devtools::install_github("moviedo5/fda.usc")

Issues & Feature Requests

For issues, bugs, feature requests etc. please use the Github Issues. Input is always welcome.

Documentation

A hands on introduction to can be found in the reference vignette.

Details on specific functions are in the reference manual.

Cheatsheet fda.usc reference card.

References

Febrero-Bande, M. and Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4):1-28. http://www.jstatsoft.org/v51/i04/

-->

Copy Link

Version

Install

install.packages('fda.usc')

Monthly Downloads

2,504

Version

2.0.2

License

GPL-2

Issues

Pull Requests

Stars

Forks

Maintainer

Manuel Oviedo de la Fuente

Last Published

February 17th, 2020

Functions in fda.usc (2.0.2)

CV.S

The cross-validation (CV) score
Kernel.integrate

Integrate Smoothing Kernels.
Kernel.asymmetric

Asymmetric Smoothing Kernel
Var.y

Sampling Variance estimates
S.np

Smoothing matrix by nonparametric methods
Descriptive

Descriptive measures for functional data.
dis.cos.cor

Proximities between functional data
fanova.RPm

Functional ANOVA with Random Project.
fdata2fd

Converts fdata class object into fd class object
LMDC.select

Impact points selection of functional predictor and regression using local maxima distance correlation (LMDC)
classif.np

Kernel Classifier from Functional Data
classif.kfold

Functional Classification usign k-fold CV
fdata.methods

fdata S3 Group Generic Functions
accuracy

Performance measures for regression and classification models
GCV.S

The generalized correlated cross-validation (GCCV) score
Kernel

Symmetric Smoothing Kernels.
classif.DD

DD-Classifier Based on DD-plot
MCO

Mithochondiral calcium overload (MCO) data set
FDR

False Discorvery Rate (FDR)
PCvM.statistic

PCvM statistic for the Functional Linear Model with scalar response
classif.depth

Classifier from Functional Data
fregre.glm

Fitting Functional Generalized Linear Models
S.basis

Smoothing matrix with roughness penalties by basis representation.
fregre.gkam

Fitting Functional Generalized Kernel Additive Models.
classif.ML

Functional classification using ML algotithms
cond.F

Conditional Distribution Function
classif.gkam

Classification Fitting Functional Generalized Kernel Additive Models
cond.quantile

Conditional quantile
aemet

aemet data
cond.mode

Conditional mode
create.fdata.basis

Create Basis Set for Functional Data of fdata class
dcor.xy

Distance Correlation Statistic and t-Test
fda.usc-package

Functional Data Analysis and Utilities for Statistical Computing (fda.usc)
depth.fdata

Computation of depth measures for functional data
dev.S

The deviance score
depth.mdata

Provides the depth measure for multivariate data
fregre.pls

Functional Penalized PLS regression with scalar response
dfv.test

Delsol, Ferraty and Vieu test for no functional-scalar interaction
depth.mfdata

Provides the depth measure for a list of p--functional data objects
fdata2pls

Partial least squares components for functional data.
GCCV.S

The generalized correlated cross-validation (GCCV) score.
fdata2pc

Principal components for functional data
fda.usc.internal

fda.usc internal functions
fregre.lm

Fitting Functional Linear Models
fregre.basis

Functional Regression with scalar response using basis representation.
fregre.basis.fr

Functional Regression with functional response using basis representation.
fregre.bootstrap

Bootstrap regression
Outliers.fdata

outliers for functional dataset
fregre.basis.cv

Cross-validation Functional Regression with scalar response using basis representation.
fregre.np

Functional regression with scalar response using non-parametric kernel estimation
metric.dist

Distance Matrix Computation
h.default

Calculation of the smoothing parameter (h) for a functional data
phoneme

phoneme data
influence.fregre.fd

Functional influence measures
fdata.cen

Functional data centred (subtract the mean of each discretization point)
fregre.pls.cv

Functional penalized PLS regression with scalar response using selection of number of PLS components
P.penalty

Penalty matrix for higher order differences
plot.fdata

Plot functional data: fdata class object
metric.hausdorff

Compute the Hausdorff distances between two curves.
fregre.pc.cv

Functional penalized PC regression with scalar response using selection of number of PC components
ldata

ldata class definition and utilities
fregre.plm

Semi-functional partially linear model with scalar response.
fregre.gls

Fit Functional Linear Model Using Generalized Least Squares
fdata.deriv

Computes the derivative of functional data object.
fregre.gsam

Fitting Functional Generalized Spectral Additive Models
fregre.igls

Fit of Functional Generalized Least Squares Model Iteratively
fregre.gsam.vs

Variable Selection using Functional Additive Models
rdir.pc

Data-driven sampling of random directions guided by sample of functional data
poblenou

poblenou data
metric.lp

Approximates Lp-metric distances for functional data.
predict.classif.DD

Predicts from a fitted classif.DD object.
metric.DTW

DTW: Dynamic time warping
predict.fregre.gkam

Predict method for functional linear model
na.omit.fdata

A wrapper for the na.omit and na.fail function for fdata object
classif.glm

Classification Fitting Functional Generalized Linear Models
subset.fdata

Subsetting
r.ou

Ornstein-Uhlenbeck process
summary.fdata.comp

Correlation for functional data by Principal Component Analysis
metric.kl

Kullback--Leibler distance
rp.flm.test

Goodness-of fit test for the functional linear model using random projections
classif.gsam

Classification Fitting Functional Generalized Additive Models
rp.flm.statistic

Statistics for testing the functional linear model using random projections
metric.ldata

Distance Matrix Computation for ldata and mfdata class object
rcombfdata

Utils for generate functional data
summary.classif

Summarizes information from kernel classification methods.
summary.fregre.fd

Summarizes information from fregre.fd objects.
fanova.hetero

ANOVA for heteroscedastic data
fanova.onefactor

One--way anova model for functional data
int.simpson

Simpson integration
fdata.bootstrap

Bootstrap samples of a functional statistic
ops.fda.usc

ops.fda.usc Options Settings
flm.test

Goodness-of-fit test for the Functional Linear Model with scalar response
kmeans.center.ini

K-Means Clustering for functional data
predict.fregre.fr

Predict method for functional response model
norm.fdata

Approximates Lp-norm for functional data.
flm.Ftest

F-test for the Functional Linear Model with scalar response
summary.fregre.gkam

Summarizes information from fregre.gkam objects.
tecator

tecator data
fdata

Converts raw data or other functional data classes into fdata class.
semimetric.basis

Proximities between functional data
fregre.np.cv

Cross-validation functional regression with scalar response using kernel estimation.
semimetric.NPFDA

Proximities between functional data (semi-metrics)
predict.fregre.gls

Predictions from a functional gls object
fregre.pc

Functional Regression with scalar response using Principal Components Analysis
inprod.fdata

Inner products of Functional Data Objects o class (fdata)
influence_quan

Quantile for influence measures
predict.fregre.fd

Predict method for functional linear model (fregre.fd class)
optim.basis

Select the number of basis using GCV method.
rwild

Wild bootstrap residuals
optim.np

Smoothing of functional data using nonparametric kernel estimation
weights4class

Weighting tools
predict.classif

Predicts from a fitted classif object.
rproc2fdata

Simulate several random processes.