Computes functional linear regression between functional explanatory variable
fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)
Return:
call
The matched call of fregre.pls
function.
beta.est
Beta coefficient estimated of class fdata
.
coefficients
A named vector of coefficients.
fitted.values
Estimated scalar response.
residuals
y
-fitted values
.
H
Hat matrix.
df
The residual degrees of freedom.
r2
Coefficient of determination.
GCV
GCV criterion.
sr2
Residual variance.
l
Index of components to include in the model.
lambda
Amount of shrinkage.
fdata.comp
Fitted object in fdata2pls
function.
lm
Fitted object in lm
function
fdataobj
Functional explanatory data.
y
Scalar response.
fdata
class object.
Scalar response with length n
.
Index of components to include in the model.
Amount of penalization. Default value is 0, i.e. no penalization is used.
If P
is a vector: P
are coefficients to define the
penalty matrix object. By default P=c(0,0,1)
penalize the second
derivative (curvature) or acceleration. If P
is a matrix: P is the
penalty matrix object.
Further arguments passed to or from other methods.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Functional (FPLS) algorithm maximizes the covariance between fdata2pls
by alternative formulation of the NIPALS algorithm proposed by Kraemer and
Sugiyama (2011).
Let
The response can be fitted by:
Penalized regression, P=P.penalty(fdataobj["argvals"],P)
,
Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.
N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems, 94, 60 - 69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009
Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.
Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: P.penalty
and
fregre.pls.cv
.
Alternative method: fregre.pc
.
if (FALSE) {
data(tecator)
x<-tecator$absorp.fdata
y<-tecator$y$Fat
res=fregre.pls(x,y,c(1:8),lambda=10)
summary(res)
}
Run the code above in your browser using DataLab