50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

fda.usc (version 2.0.2)

fregre.pls: Functional Penalized PLS regression with scalar response

Description

Computes functional linear regression between functional explanatory variable X(t) and scalar response Y using penalized Partial Least Squares (PLS) Y=X~,β+ϵ=TX~(t)β(t)dt+ϵ where , denotes the inner product on L2 and ϵ are random errors with mean zero , finite variance σ2 and E[X~(t)ϵ]=0.
{νk}k=1 orthonormal basis of PLS to represent the functional data as Xi(t)=k=1γikνk.

Usage

fregre.pls(fdataobj, y = NULL, l = NULL, lambda = 0, P = c(0, 0, 1), ...)

Value

Return:

  • call The matched call of fregre.pls function.

  • beta.est Beta coefficient estimated of class fdata.

  • coefficients A named vector of coefficients.

  • fitted.values Estimated scalar response.

  • residualsy-fitted values.

  • H Hat matrix.

  • df The residual degrees of freedom.

  • r2 Coefficient of determination.

  • GCV GCV criterion.

  • sr2 Residual variance.

  • l Index of components to include in the model.

  • lambda Amount of shrinkage.

  • fdata.comp Fitted object in fdata2pls function.

  • lm Fitted object in lm function

  • fdataobj Functional explanatory data.

  • y Scalar response.

Arguments

fdataobj

fdata class object.

y

Scalar response with length n.

l

Index of components to include in the model.

lambda

Amount of penalization. Default value is 0, i.e. no penalization is used.

P

If P is a vector: P are coefficients to define the penalty matrix object. By default P=c(0,0,1) penalize the second derivative (curvature) or acceleration. If P is a matrix: P is the penalty matrix object.

...

Further arguments passed to or from other methods.

Author

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es

Details

Functional (FPLS) algorithm maximizes the covariance between X(t) and the scalar response Y via the partial least squares (PLS) components. The functional penalized PLS are calculated in fdata2pls by alternative formulation of the NIPALS algorithm proposed by Kraemer and Sugiyama (2011).
Let {ν~k}k=1 the functional PLS components and X~i(t)=k=1γ~ikν~k and β(t)=k=1β~kν~k. The functional linear model is estimated by: y^=X,β^k=1knγ~kβ~k
The response can be fitted by:

  • λ=0, no penalization, y^=νk(νkνk)1νky

    • Penalized regression, λ>0 and P0. For example, P=c(0,0,1) penalizes the second derivative (curvature) by P=P.penalty(fdataobj["argvals"],P), y^=νk(νkνk+λνkPνk)1νky

References

Preda C. and Saporta G. PLS regression on a stochastic process. Comput. Statist. Data Anal. 48 (2005): 149-158.

N. Kraemer, A.-L. Boulsteix, and G. Tutz (2008). Penalized Partial Least Squares with Applications to B-Spline Transformations and Functional Data. Chemometrics and Intelligent Laboratory Systems, 94, 60 - 69. http://dx.doi.org/10.1016/j.chemolab.2008.06.009

Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.

Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.

Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/

See Also

See Also as: P.penalty and fregre.pls.cv.
Alternative method: fregre.pc.

Examples

Run this code
if (FALSE) {
data(tecator)
x<-tecator$absorp.fdata
y<-tecator$y$Fat
res=fregre.pls(x,y,c(1:8),lambda=10)
summary(res)
}

Run the code above in your browser using DataLab