Learn R Programming

⚠️There's a newer version (2.4.0) of this package.Take me there.

fdasrvf

R library for elastic functional data analysis

A R package for functional data analysis using the square root velocity framework which performs pair-wise and group-wise alignment as well as modeling using functional component analysis

Installation


v2.0.0 is on CRAN and can be installed as

install.packages("fdasrvf")

For a more up to date, but may not be stable version from git repository This version has RBFGS while CRAN does not.

  1. Download zip or tar.gz of package or clone repository
  2. Install into R (> 3.5.0)

install.packages("fdasrvf.tar.gz", repos = NULL)


References

Tucker, J. D. 2014, Functional Component Analysis and Regression using Elastic Methods. Ph.D. Thesis, Florida State University.

Robinson, D. T. 2012, Function Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. Thesis, Florida State University.

Huang, W. 2014, Optimization Algorithms on Riemannian Manifolds with Applications. Ph.D. Thesis, Florida State University.

Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011). Registration of Functional Data Using Fisher-Rao Metric. arXiv:1103.3817v2.

Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Computational Statistics and Data Analysis 61, 50-66.

J. D. Tucker, W. Wu, and A. Srivastava, "Phase-Amplitude Separation of Proteomics Data Using Extended Fisher-Rao Metric," Electronic Journal of Statistics, Vol 8, no. 2. pp 1724-1733, 2014.

J. D. Tucker, W. Wu, and A. Srivastava, "Analysis of signals under compositional noise With applications to SONAR data," IEEE Journal of Oceanic Engineering, Vol 29, no. 2. pp 318-330, Apr 2014.

Srivastava, A., Klassen, E., Joshi, S., Jermyn, I., (2011). Shape analysis of elastic curves in euclidean spaces. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (7), 1415-1428.

S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear signal alignment. In Proceedings of Neural Information Processing Systems (NIPS), 2011.

Wen Huang, Kyle A. Gallivan, Anuj Srivastava, Pierre-Antoine Absil. "Riemannian Optimization for Elastic Shape Analysis", Short version, The 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014).

Cheng, W., Dryden, I. L., and Huang, X. (2016). Bayesian registration of functions and curves. Bayesian Analysis, 11(2), 447-475.

W. Xie, S. Kurtek, K. Bharath, and Y. Sun, A geometric approach to visualization of variability in functional data, Journal of American Statistical Association 112 (2017), pp. 979-993.

Lu, Y., R. Herbei, and S. Kurtek, 2017: Bayesian registration of functions with a Gaussian process prior. Journal of Computational and Graphical Statistics, 26, no. 4, 894–904.

Lee, S. and S. Jung, 2017: Combined analysis of amplitude and phase variations in functional data. arXiv:1603.01775, 1–21.

J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic Functional Principal Component Regression,” Statistical Analysis and Data Mining, vol. 12, no. 2, pp. 101-115, 2019.

J. D. Tucker, J. R. Lewis, C. King, and S. Kurtek, “A Geometric Approach for Computing Tolerance Bounds for Elastic Functional Data,” Journal of Applied Statistics, 10.1080/02664763.2019.1645818, 2019.

T. Harris, J. D. Tucker, B. Li, and L. Shand, "Elastic depths for detecting shape anomalies in functional data," Technometrics, 10.1080/00401706.2020.1811156, 2020.

Q. Xie, S. Kurtek, E. Klassen, G. E. Christensen and A. Srivastava. Metric-based pairwise and multiple image registration. IEEE European Conference on Computer Vision (ECCV), September, 2014

X. Zhang, S. Kurtek, O. Chkrebtii, and J. D. Tucker, “Elastic kkk-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics”, arXiv:2011.12397 [stat.ME], 2020 arxiv

Copy Link

Version

Install

install.packages('fdasrvf')

Monthly Downloads

638

Version

2.0.0

License

GPL-3

Maintainer

J Derek Tucker

Last Published

February 24th, 2023

Functions in fdasrvf (2.0.0)

elastic.lpcr.regression

Elastic logistic Principal Component Regression
SqrtMean

SRVF transform of warping functions
AmplitudeBoxplot

Amplitude Boxplot
PhaseBoxplot

Phase Boxplot
calc_shape_dist

Elastic Shape Distance
elastic.mlogistic

Elastic Multinomial Logistic Regression
curve_geodesic

Form geodesic between two curves
f_to_srvf

Transformation to SRSF Space
curve_srvf_align

Align Curves
curve_karcher_mean

Karcher Mean of Curves
elastic.distance

Calculates two elastic distance
elastic.prediction

Elastic Prediction from Regression Models
curve_pair_align

Pairwise align two curves
curve_karcher_cov

Curve Karcher Covariance
jointFPCA

Joint Vertical and Horizontal Functional Principal Component Analysis
elastic.regression

Elastic Linear Regression
pcaTB

Tolerance Bound Calculation using Elastic Functional PCA
joint_gauss_model

Gaussian model of functional data using joint Model
elastic.logistic

Elastic Logistic Regression
fdasrvf

Elastic Functional Data Analysis
predict.lpcr

Elastic Prediction for functional logistic PCR Model
simu_warp_median

Aligned Simulated two Gaussian Dataset using Median
SqrtMedian

SRVF transform of warping functions
curve_to_q

Convert to SRVF space
im

Example Image Data set
elastic.mlpcr.regression

Elastic Multinomial logistic Principal Component Regression
pair_align_image

Pairwise align two images This function aligns to images using the q-map framework
simu_data

Simulated two Gaussian Dataset
curve_principal_directions

Curve PCA
kmeans_align

K-Means Clustering and Alignment
elastic.depth

Calculates elastic depth
smooth.data

Smooth Functions
gradient

Gradient using finite differences
elastic.pcr.regression

Elastic Linear Principal Component Regression
function_mean_bayes

Bayesian Karcher Mean Calculation
function_group_warp_bayes

Bayesian Group Warping
toy_data

Distributed Gaussian Peak Dataset
toy_warp

Aligned Distributed Gaussian Peak Dataset
pair_align_functions_expomap

Align two functions using geometric properties of warping functions
horizFPCA

Horizontal Functional Principal Component Analysis
gauss_model

Gaussian model of functional data
reparam_curve

Align two curves
vertFPCA

Vertical Functional Principal Component Analysis
optimum.reparam

Align two functions
growth_vel

Berkeley Growth Velocity Dataset
q_to_curve

Convert to curve space
invertGamma

Invert Warping Function
predict.pcr

Elastic Prediction for functional PCR Model
predict.mlpcr

Elastic Prediction for functional multinomial logistic PCR Model
rgam

Random Warping
outlier.detection

Outlier Detection
sample_shapes

Sample shapes from model
warp_f_gamma

Warp Function
reparam_image

Find optimum reparameterization between two images
multiple_align_functions

Group-wise function alignment to specified mean
simu_warp

Aligned Simulated two Gaussian Dataset
pair_align_functions

Align two functions
srvf_to_f

Transformation from SRSF Space
time_warping

Group-wise function alignment
pair_align_functions_bayes

Align two functions
warp_q_gamma

Warp SRSF
resamplecurve

Resample Curve
bootTB

Tolerance Bound Calculation using Bootstrap Sampling
align_fPCA

Group-wise function alignment and PCA Extractions
beta

MPEG7 Curve Dataset