This function aligns a collection of functions using the elastic square-root slope (srsf) framework.
time_warping(
f,
time,
lambda = 0,
pen = "roughness",
method = "mean",
center = TRUE,
showplot = TRUE,
smooth_data = FALSE,
sparam = 25,
parallel = FALSE,
omethod = "DP",
MaxItr = 20
)
Returns a fdawarp object containing
original functions
aligned functions - matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
aligned SRSFs - similar structure to fn
original SRSF - similar structure to fn
function mean or median - vector of length \(N\)
SRSF mean or median - vector of length \(N\)
warping functions - similar structure to fn
Original Variance of Functions
Amplitude Variance
Phase Variance
Cost Function Value
matrix (\(N\) x \(M\)) of \(M\) functions with \(N\) samples
vector of size \(N\) describing the sample points
controls the elasticity (default = 0)
alignment penalty (default="roughness") options are second derivative ("roughness"), geodesic distance from id ("geodesic"), and norm from id ("norm")
warp and calculate to Karcher Mean or Median (options = "mean" or "median", default = "mean")
center warping functions (default = T)
shows plots of functions (default = T)
smooth data using box filter (default = F)
number of times to apply box filter (default = 25)
enable parallel mode using foreach()
and
doParallel
package (default=F)
optimization method (DP,DP2,RBFGS)
maximum number of iterations
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J. S., May 2011. Registration of functional data using fisher-rao metric, arXiv:1103.3817v2.
Tucker, J. D., Wu, W., Srivastava, A., Generative Models for Function Data using Phase and Amplitude Separation, Computational Statistics and Data Analysis (2012), 10.1016/j.csda.2012.12.001.
if (FALSE) {
out <- time_warping(simu_data$f, simu_data$time)
}
Run the code above in your browser using DataLab